

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions

European Journal of Combinatorics

Dongryul Kim

Harvard College, Cambridge, MA 02138, USA

ARTICLE INFO

Article history: Received 4 September 2016 Accepted 30 January 2017 Available online 24 February 2017

ABSTRACT

The Golomb–Welch conjecture states that there are no perfect *e*-error-correcting codes in \mathbb{Z}^n for $n \ge 3$ and $e \ge 2$. In this note, we prove the nonexistence of perfect 2-error-correcting codes for a certain class of *n*, which is expected to be infinite. This result further substantiates the Golomb–Welch conjecture.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For an integer $q \ge 2$, consider the space $(\mathbb{Z}/q\mathbb{Z})^n$ equipped with the Lee metric *d* given by

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \min\{|x_i - y_i|, q - |x_i - y_i|\}.$$

An *e*-*error*-*correcting Lee code* is a subset $C \subseteq (\mathbb{Z}/q\mathbb{Z})^n$ such that any two distinct elements of *C* have distance at least 2e + 1. An *e*-error-correcting Lee code *C* is further called a *perfect e*-*error*-*correcting Lee code* if for each $x \in (\mathbb{Z}/q\mathbb{Z})^n$, there exists a unique element $c \in C$ such that $d(x, c) \leq e$. A perfect *e*-error-correcting Lee code in $(\mathbb{Z}/q\mathbb{Z})^n$ is also called simply a PL(n, e, q)-code.

There is an equivalent description of error-correcting Lee codes that uses the language of tilings. Consider the *Lee sphere*

 $S(n, e, q) = \{ \mathbf{x} \in (\mathbb{Z}/q\mathbb{Z})^n : d(\mathbf{x}, \mathbf{0}) \le e \}$

of radius *e*. An *e*-error-correcting Lee code is a subset $C \subseteq (\mathbb{Z}/q\mathbb{Z})^n$ such that for any $\mathbf{x} \neq \mathbf{y}$ in *C*, the two spheres $\mathbf{x} + S(n, e, q)$ and $\mathbf{y} + S(n, e, q)$ are disjoint. Thus it can be naturally identified with a translational packing of S(n, e, q) in $(\mathbb{Z}/q\mathbb{Z})^n$. A perfect *e*-error-correcting Lee code then corresponds to a translational tiling of $(\mathbb{Z}/q\mathbb{Z})^n$ by S(n, e, q).

http://dx.doi.org/10.1016/j.ejc.2017.01.007

E-mail address: kdr0515@gmail.com.

^{0195-6698/© 2017} Elsevier Ltd. All rights reserved.

If $q \ge 2e + 1$, then the natural projection map $\mathbb{Z}^n \to (\mathbb{Z}/q\mathbb{Z})^n$ restricts to a bijection from

$$S(n, e) = \{ \mathbf{x} \in \mathbb{Z}^n : |x_1| + |x_2| + \dots + |x_n| \le e \}$$

to S(n, e, q). Any tiling of $(\mathbb{Z}/q\mathbb{Z})^n$ by S(n, e, q) will then pull back via the projection to a tiling of \mathbb{Z}^n by S(n, e). Let us call a subset $C \subseteq \mathbb{Z}^n$ a *perfect e-error-correcting Lee code* in \mathbb{Z}^n , or simply a PL(n, e)-code, if the translates of S(n, e) centered at vectors of C form a tiling of \mathbb{Z}^n . Then a PL(n, e, q)-code induces a PL(n, e)-code that is a disjoint union of cosets of $q\mathbb{Z}^n \subset \mathbb{Z}^n$. Conversely, any such PL(n, e)-code clearly comes from a PL(n, e, q)-code. We restate this in the following proposition.

Proposition 1. For $q \ge 2e + 1$, there exists a natural bijection between PL(n, e, q)-codes and PL(n, e)codes that is a union of cosets of $q\mathbb{Z}^n \subset \mathbb{Z}^n$, given by taking the image or the inverse image with respect
to the projection map $\mathbb{Z}^n \to (\mathbb{Z}/q\mathbb{Z})^n$.

Thus to know all about PL(n, e, q)-codes, it suffices to study PL(n, e)-codes.

Error-correcting codes in the Lee metric have been first investigated by Golomb and Welch [2]. In the paper, they explicitly construct PL(1, e, 2e + 1)-codes, $PL(2, e, 2e^2 + 2e + 1)$ -codes, and PL(n, 1, 2n + 1)-codes. On the other hand, they conjecture the nonexistence of perfect Lee codes for other *n* and *e*.

Conjecture 2. For $n \ge 3$ and $e \ge 2$, there exist no PL(n, e)-codes.

The case when *e* is "large" compared to *n* is studied extensively in the literature. Golomb and Welch [2] proved using a compactness argument that for each $n \ge 3$, there exists a sufficiently large ρ_n such that there exist no PL(n, e)-codes for each $e \ge \rho_n$. An effective form of this theorem, that PL(n, e, q)-codes do not exist for $3 \le n \le 5$, $e \ge n-1$, $q \ge 2e+1$ and $n \ge 6$, $e \ge \frac{\sqrt{2}}{2}n - \frac{3}{4}\sqrt{2} - \frac{1}{2}$, $q \ge 2e + 1$, was subsequently shown by Post [8]. Lepistö [7] improved the bound asymptotically and obtained the following theorem.

Theorem 3. For any n, e, q satisfying $n \ge (e + 2)^2/2.1$ and $e \ge 285$ and $q \ge 2e + 1$, there exist no *PL*(n, e, q)-codes.

Another direction of approach is to focus on small *n*. Gravier, Mollard, and Payan [3] showed the nonexistence of *PL*(3, *e*)-codes by analyzing possible local configurations. Later a computer-based proof of the nonexistence of *PL*(4, *e*)-codes was given by Špacapan [9], and Horak [5] further extended the theorem to prove nonexistence of *PL*(*n*, *e*)-codes for $3 \le n \le 5$ and $e \ge 2$. In recent years, the case e = 2 has been investigated for reasonably small *n*. For n = 5, 6, Horak [4] showed that *PL*(5, 2)-codes and *PL*(6, 2)-codes do not exist, and Horak and Grosěk [6] further showed using a computer that for $7 \le n \le 12$ there are no linear *PL*(*n*, 2)-codes, i.e., *PL*(*n*, 2)-codes that is a lattice in \mathbb{Z}^n .

In this note, we continue along this line and provide a number theoretic condition under which PL(n, 2)-codes do not exist. In particular, we prove the following theorem.

Theorem 4. Suppose $p = 2n^2 + 2n + 1$ is prime. Let *a* be the smallest positive integer for which $p \mid 4^a + 4n + 2$ and *b* be the smallest positive integer for which $p \mid 4^b - 1$. (For convenience let $a = \infty$ if there is no a with $p \mid 4^a + 4n + 2$.) If the equation a(x + 1) + by = n has no nonnegative integer solutions, then PL(*n*, 2)-codes do not exist. For instance, there are no PL(*n*, 2)-codes for $n = 5, 7, 9, 12, 14, 17, \ldots$

To illustrate the strength of this theorem, we provide numerical data concerning the number of n to which the theorem can be applied. As in Table 1, if $2n^2 + 2n + 1$ is indeed prime, in most cases the second condition about the equation having no nonnegative solutions is also satisfied. It is reasonable to expect that there are infinitely many n such that $2n^2 + 2n + 1$ is prime, although it is far from being proved. This is a special case of the Bunyakovsky conjecture, and moreover the heuristics of the Bateman–Horn conjecture [1] expects there to be asymptotically $Cx/\log x$ such $n \le x$ for some absolute constant C.

The condition $2n^2 + 2n + 1 = |S(n, 2)|$ being prime is included in order to use a result that allows us to translate the tiling problem to a purely algebraic problem. The following theorem is proved in [10].

Download English Version:

https://daneshyari.com/en/article/5777377

Download Persian Version:

https://daneshyari.com/article/5777377

Daneshyari.com