Decomposing almost complete graphs by random trees

Anna Lladó
Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

A R T I C L E I N F O

Article history:

Received 13 December 2015
Available online xxxx

Keywords:

Graph decomposition
Ringel's conjecture
Polynomial method

Abstract

An old conjecture of Ringel states that every tree with m edges decomposes the complete graph $K_{2 m+1}$. The best known lower bound for the order of a complete graph which admits a decomposition by every given tree with m edges is $O\left(m^{3}\right)$. We show that asymptotically almost surely a random tree with m edges and $p=2 m+1$ a prime decomposes $K_{2 m+1}(r)$ for every $r \geq 2$, the graph obtained from the complete graph $K_{2 m+1}$ by replacing each vertex by a coclique of order r. Based on this result we show, among other results, that a random tree with $m+1$ edges a.a.s. decomposes the compete graph $K_{6 m+5}$ minus one edge.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given two graphs H and G we say that H decomposes G if G is the edge-disjoint union of isomorphic copies of H. The following is a well-known conjecture of Ringel.

Conjecture 1 (Ringel [17]). Every tree with m edges decomposes the complete graph $K_{2 m+1}$.

[^0]The conjecture has been verified by a number of particular classes of trees, see the extensive survey by Gallian [10]. Recently, there have been substantial contributions in the area of graph decomposition problems which are partly motivated by Conjecture 1 leading to impressive results. Böttcher, Hladký, Piguet and Taraz [3] show that, for any $\epsilon>0$ and any Δ, every family of trees with orders at most n maximum degree at most Δ and at most $\binom{n}{2}$ edges in total packs into the complete graph $K_{(1+\epsilon) n}$ for every sufficiently large n. This provides an approximate result to several tree packing conjectures including Conjecture 1. The result was extended by Mesuti, Rödl and Schacht [16] from trees to general minor closed classes of bounded degree graphs and by Ferber, Lee and Moussat [9] to separable classes of bounded degree graphs. Recently, Joos, Kim, Kühn and Osthus [12] gave a general result on packing trees which in particular definitely proves Conjecture 1 for bounded degree trees and sufficiently large m.

In this paper we aim at results for almost all trees. By a random tree of size m we mean an unlabelled tree chosen uniformly at random among all the unlabelled trees with m edges. Drmota and the author [8] used structural results on random trees to show that asymptotically almost surely (a.a.s.) a random tree with m edges decomposes the complete bipartite graph $K_{2 m, 2 m}$, thus providing an approximate result to another decomposition conjecture by Graham and Häggkvist (see e.g. [11]) which asserts that the complete bipartite graph $K_{m, m}$ can be decomposed by any given tree with m edges.

Let $g(m)$ be the smallest integer n such that any tree with m edges decomposes the complete graph K_{n}. It was shown by Yuster [20] that $g(m)=O\left(m^{10}\right)$ and the upper bound was reduced by Kezdy and Snevily [14] to $g(m)=O\left(m^{3}\right)$. Since $K_{2 m, 2 m}$ decomposes the complete graph $K_{8 m^{2}+1}$ (see Snevily [19]), the above mentioned result on the decomposition of $K_{2 m, 2 m}$ shows that a tree with m edges decomposes a.a.s. the complete graph $K_{8 m^{2}+1}$, giving a quadratic bound on m for almost all trees. Our aim is to reduce this quadratic bound to linear getting much closer to Ringel's conjecture.

For positive integers n, r we denote by $K_{n}(r)$ the blow-up graph obtained from the complete graph K_{n} by replacing each vertex by a coclique of order r (r mutually nonadjacent vertices) and joining every pair of vertices that do not belong to the same coclique. Our main result is the following one.

Theorem 1. For every $r \geq 2$, asymptotically almost surely a random tree with m edges such that $p=2 m+1$ is a prime decomposes $K_{2 m+1}(r)$.

Theorem 1 will be derived from the following deterministic result which considers trees with sufficiently many leaves.

Theorem 2. Let $p>10$ be a prime and $r \geq 2$ an integer. Let T be a tree with $m=(p-1) / 2$ edges. If T has at least $2 m / 5$ leaves, then T decomposes $K_{2 m+1}(r)$.

https://daneshyari.com/en/article/5777472

Download Persian Version:

https://daneshyari.com/article/5777472

Daneshyari.com

[^0]: E-mail address: aina.1lado@upc.edu.

