Prolific permutations and permuted packings: Downsets containing many large patterns

David Bevan ${ }^{\text {a }}$, Cheyne Homberger ${ }^{\text {b }}$, Bridget Eileen Tenner ${ }^{\text {c, }}{ }^{1}$
${ }^{\text {a }}$ Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XH Scotland, United Kingdom
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, United States
c Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, United States

A R T I C L E I N F O

Article history:

Received 29 November 2016

Keywords:

Permutation
Pattern
Pattern poset
Downset
Prolific permutation
Packing
Permuted packing

Abstract

A permutation of n letters is k-prolific if each $(n-k)$-subset of the letters in its one-line notation forms a unique pattern. We present a complete characterization of k-prolific permutations for each k, proving that k-prolific permutations of m letters exist for every $m \geqslant k^{2} / 2+2 k+1$, and that none exist of smaller size. Key to these results is a natural bijection between k-prolific permutations and certain "permuted" packings of diamonds.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The set of permutations of $[n]=\{1,2, \ldots, n\}$ is denoted S_{n}. We write a permutation $\sigma \in S_{n}$ as a word over $[n]$ in one-line notation, $\sigma=\sigma(1) \sigma(2) \cdots \sigma(n)$, and say that such

[^0]a permutation σ has size n. If π_{1} and π_{2} are words of the same size over \mathbb{R}, then we write $\pi_{1} \approx \pi_{2}$ to denote that their letters appear in the same relative order. This prompts the classical notion of pattern containment.

Definition 1.1. Consider $\pi \in S_{r}$. A permutation $\sigma \in S_{n}$ contains the pattern π if there are indices $1 \leqslant i_{1}<\cdots<i_{r} \leqslant n$ such that $\sigma\left(i_{1}\right) \cdots \sigma\left(i_{r}\right) \approx \pi$. If σ contains π, we write $\pi \preceq \sigma$. If σ does not contain π, then σ avoids π.

From this, it is natural to define the "pattern poset" on permutations.

Definition 1.2. Let the pattern poset, \mathcal{P}, be the graded poset over $\bigcup_{k \geqslant 1} S_{k}$, ordered by the containment relation \preceq 。

By definition, the elements of rank k in \mathcal{P} are exactly the elements of S_{k}.
This paper is concerned with principal downsets of this poset, that is, with the sets of patterns which lie below a given permutation. In particular, we examine those permutations whose downset is as large as possible in the upper ranks.

This is related to problems of pattern packing [1,14], which seek to maximize the total number of distinct patterns contained in a permutation, and to problems of $s u$ perpatterns $[6,8,9,14]$, which are concerned with determining the size of the smallest permutations whose downset contains every permutation of some fixed size. Other related work addresses permutation reconstruction $[7,15,16]$, establishing when permutations are uniquely determined by the (multi)set of large patterns they contain. The reader is referred to the books by Bóna [3] and Kitaev [13] for an overview of problems related to the permutation pattern poset.

It follows immediately from the definition of \mathcal{P} that, for a permutation $\sigma \in S_{n}$, there are at most $\binom{n}{k}$ distinct permutations $\pi \preceq \sigma$ that lie exactly k ranks below σ in \mathcal{P}, since each such permutation is obtained from σ by the deletion of k letters from the one-line notation for σ. Our interest is in those permutations of size n which contain maximally many patterns of size $n-k$.

Definition 1.3. Fix positive integers $n>k \geqslant 1$. A permutation $\sigma \in S_{n}$ is k-prolific if

$$
\left|\left\{\pi \in S_{n-k}: \pi \preceq \sigma\right\}\right|=\binom{n}{k} .
$$

Clearly, not every permutation is k-prolific. As a trivial example, the identity permutation $12 \cdots n \in S_{n}$ contains only one pattern of each size, and thus is never k-prolific for any $k<n$.

Prolific permutations were previously investigated by the second author in [10]. The present work corrects and significantly improves upon the results presented there.

It is helpful to consider permutations from a graphical perspective.

https://daneshyari.com/en/article/5777505

Download Persian Version:
https://daneshyari.com/article/5777505

Daneshyari.com

[^0]: E-mail addresses: david.bevan@strath.ac.uk (D. Bevan), cheyneh@umbc.edu (C. Homberger), bridget@math.depaul.edu (B.E. Tenner).
 ${ }^{1}$ Research partially supported by a Simons Foundation Collaboration Grant for Mathematicians, number 277603, and by a DePaul University Faculty Summer Research Grant.

