

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Prolific permutations and permuted packings: Downsets containing many large patterns

David Bevan^a, Cheyne Homberger^b, Bridget Eileen Tenner^{c,1}

 ^a Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XH Scotland, United Kingdom
^b Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, United States
^c Department of Mathematical Sciences, DePaul University, Chicago, IL 60614.

United States

A R T I C L E I N F O

Article history: Received 29 November 2016

Keywords: Permutation Pattern Pattern poset Downset Prolific permutation Packing Permuted packing

АВЅТ КАСТ

A permutation of n letters is k-prolific if each (n-k)-subset of the letters in its one-line notation forms a unique pattern. We present a complete characterization of k-prolific permutations for each k, proving that k-prolific permutations of m letters exist for every $m \ge k^2/2 + 2k + 1$, and that none exist of smaller size. Key to these results is a natural bijection between k-prolific permutations and certain "permuted" packings of diamonds.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The set of permutations of $[n] = \{1, 2, ..., n\}$ is denoted S_n . We write a permutation $\sigma \in S_n$ as a word over [n] in one-line notation, $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$, and say that such

 $\label{eq:http://dx.doi.org/10.1016/j.jcta.2017.08.006} 0097\text{-}3165 \ensuremath{\oslash}\ 0097\text{-}3165 \ensuremath{\boxdot}\ 0097\text{-}3165 \ensuremath{\boxdot}\ 0097\text{-}3165 \ensuremath{\frown}\ 0097\text{-}3165 \en$

E-mail addresses: david.bevan@strath.ac.uk (D. Bevan), cheyneh@umbc.edu (C. Homberger), bridget@math.depaul.edu (B.E. Tenner).

 $^{^1}$ Research partially supported by a Simons Foundation Collaboration Grant for Mathematicians, number 277603, and by a DePaul University Faculty Summer Research Grant.

a permutation σ has size n. If π_1 and π_2 are words of the same size over \mathbb{R} , then we write $\pi_1 \approx \pi_2$ to denote that their letters appear in the same relative order. This prompts the classical notion of pattern containment.

Definition 1.1. Consider $\pi \in S_r$. A permutation $\sigma \in S_n$ contains the pattern π if there are indices $1 \leq i_1 < \cdots < i_r \leq n$ such that $\sigma(i_1) \cdots \sigma(i_r) \approx \pi$. If σ contains π , we write $\pi \leq \sigma$. If σ does not contain π , then σ avoids π .

From this, it is natural to define the "pattern poset" on permutations.

Definition 1.2. Let the *pattern poset*, \mathcal{P} , be the graded poset over $\bigcup_{k \ge 1} S_k$, ordered by the containment relation \preceq .

By definition, the elements of rank k in \mathcal{P} are exactly the elements of S_k .

This paper is concerned with principal downsets of this poset, that is, with the sets of patterns which lie below a given permutation. In particular, we examine those permutations whose downset is as large as possible in the upper ranks.

This is related to problems of *pattern packing* [1,14], which seek to maximize the total number of distinct patterns contained in a permutation, and to problems of *superpatterns* [6,8,9,14], which are concerned with determining the size of the smallest permutations whose downset contains every permutation of some fixed size. Other related work addresses permutation *reconstruction* [7,15,16], establishing when permutations are uniquely determined by the (multi)set of large patterns they contain. The reader is referred to the books by Bóna [3] and Kitaev [13] for an overview of problems related to the permutation pattern poset.

It follows immediately from the definition of \mathcal{P} that, for a permutation $\sigma \in S_n$, there are at most $\binom{n}{k}$ distinct permutations $\pi \leq \sigma$ that lie exactly k ranks below σ in \mathcal{P} , since each such permutation is obtained from σ by the deletion of k letters from the one-line notation for σ . Our interest is in those permutations of size n which contain maximally many patterns of size n - k.

Definition 1.3. Fix positive integers $n > k \ge 1$. A permutation $\sigma \in S_n$ is k-prolific if

$$\left|\left\{\pi \in S_{n-k} : \pi \preceq \sigma\right\}\right| = \binom{n}{k}.$$

Clearly, not every permutation is k-prolific. As a trivial example, the identity permutation $12 \cdots n \in S_n$ contains only one pattern of each size, and thus is never k-prolific for any k < n.

Prolific permutations were previously investigated by the second author in [10]. The present work corrects and significantly improves upon the results presented there.

It is helpful to consider permutations from a graphical perspective.

Download English Version:

https://daneshyari.com/en/article/5777505

Download Persian Version:

https://daneshyari.com/article/5777505

Daneshyari.com