Coloring graphs with forbidden minors

Martin Rolek, Zi-Xia Song *
Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States

A R T I C L E I N F O

Article history:

Received 17 June 2016
Available online xxxx

Keywords:

Hadwiger's conjecture
Graph minor
Contraction-critical graph

Abstract

Hadwiger's conjecture from 1943 states that for every integer $t \geq 1$, every graph either can be t-colored or has a subgraph that can be contracted to the complete graph on $t+1$ vertices. As pointed out by Paul Seymour in his recent survey on Hadwiger's conjecture, proving that graphs with no K_{7} minor are 6 -colorable is the first case of Hadwiger's conjecture that is still open. It is not known yet whether graphs with no K_{7} minor are 7 -colorable. Using a Kempe-chain argument along with the fact that an induced path on three vertices is dominating in a graph with independence number two, we first give a very short and computer-free proof of a recent result of Albar and Gonçalves and generalize it to the next step by showing that every graph with no K_{t} minor is $(2 t-6)$-colorable, where $t \in\{7,8,9\}$. We then prove that graphs with no K_{8}^{-}minor are 9-colorable, and graphs with no $K_{8}=$ minor are 8 -colorable. Finally we prove that if Mader's bound for the extremal function for K_{t} minors is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable for all $t \geq 6$. This implies our first result. We believe that the Kempe-chain method we have developed in this paper is of independent interest.

© 2017 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.jctb.2017.05.001
0095-8956/® 2017 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. We write $G>H$ if H is a minor of G. In those circumstances we also say that G has an H minor.

Our work is motivated by the following Hadwiger's conjecture [6], which is perhaps the most famous conjecture in graph theory, as pointed out by Paul Seymour in his recent survey [18].

Conjecture 1.1. For every integer $t \geq 1$, every graph with no K_{t+1} minor is t-colorable.
Hadwiger's conjecture is trivially true for $t \leq 2$, and reasonably easy for $t=3$, as shown by Dirac [3]. However, for $t \geq 4$, Hadwiger's conjecture implies the Four Color Theorem. Wagner [22] proved that the case $t=4$ of Hadwiger's conjecture is, in fact, equivalent to the Four Color Theorem, and the same was shown for $t=5$ by Robertson, Seymour and Thomas [16]. Hadwiger's conjecture remains open for $t \geq 6$. As pointed out by Paul Seymour [18] in his recent survey on Hadwiger's conjecture, proving that graphs with no K_{7} minor are 6-colorable is thus the first case of Hadwiger's conjecture that is still open. It is not even known yet whether every graph with no K_{7} minor is 7 -colorable. Kawarabayashi and Toft [11] proved that every graph with no K_{7} or $K_{4,4}$ minor is 6 -colorable. Jakobsen $[8,9]$ proved that every graph with no $K_{7}^{\overline{=}}$ minor is 6 -colorable and every graph with no K_{7}^{-}minor is 7 -colorable, where for any integer $p>0, K_{p}^{-}$denotes the graph obtained from K_{p} by removing one edge, and $K_{p}^{=}$denotes the family of two non-isomorphic graphs each obtained from K_{p} by removing two edges. Note that a graph has no $K_{p}^{=}$minor if it does not contain any of the two graphs in $K_{p}^{=}$as a minor; and a graph G has a $K_{p}^{=}$minor or $G>K_{p}^{=}$if G contains one of the graphs in $K_{p}^{=}$as a minor. For more information on Hadwiger's conjecture, the readers are referred to an earlier survey by Toft [21] and a very recent informative survey due to Seymour [18].

Albar and Gonçalves [1] recently proved the following:
Theorem 1.2. (Albar and Gonçalves [1]) Every graph with no K_{7} minor is 8-colorable, and every graph with no K_{8} minor is 10 -colorable.

The proof of Theorem 1.2 is computer-assisted and not simple. In this paper, we apply a Kempe-chain argument (see Lemma 1.7 below), along with the fact that an induced path on three vertices is dominating in a graph with independence number two, to give a much shorter and computer-free proof of Theorem 1.2. In addition, we generalize it to the next step by proving the following.

Theorem 1.3. Every graph with no K_{t} minor is $(2 t-6)$-colorable, where $t \in\{7,8,9\}$.
We want to point out that our proof of Theorem 1.3 does not rely on Mader's deep result on the connectivity of contraction-critical graphs (see Theorem 1.8 below).

Download Persian Version:
https://daneshyari.com/article/5777579

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mrolek@knights.ucf.edu (M. Rolek), Zixia.Song@ucf.edu (Z-X. Song).

