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A resolvably measurable function is a real-valued function for which the preimage 
of each open set is resolvable. It is shown that resolvably measurable functions 
f : X ⊂ R → Y ⊂ R (a subclass of Δ0

2-measurable functions) have a decomposition 
into countably many continuous restrictions.

© 2017 Published by Elsevier B.V.

We study a class of particular functions f : X → Y of the first Baire class and their decomposition to 
countably many continuous restrictions. Luzin formulated the problem whether Borel measurable functions 
have such a decomposition. It is known that this is not the case even for functions of the first Baire 
class [1]. Jayne and Rogers showed in [6] that such a decomposition exists, for sufficiently regular (e.g., 
analytic) space X, for a smaller class of Δ0

2-measurable functions f (which coincides with the class of 
resolvable–measurable functions in the case of complete metric spaces X); moreover, the restrictions may 
be restrictions to closed subsets of X in such a case. Further deep improvements can be found in a paper 
by S. Solecki [15] (for more information see papers [7] by M. Kac̆ena, L. Motto Ros, B. Semmes, [2] by T. 
Banakh and B. Bokalo, [14] by J. Pawlikowski and M. Sabok, and very recenly the works by S. Medvedev).

Note that our interest in resolvably measurable functions arose after the remarkable results of S. Gao and 
V. Kieftenbeld, P. Holický and R. Pol, who proved that open–resolvable functions preserve Polish spaces 
[3], [4], [5]. Since a function f is open–resolvable if and only if its inverse f−1 is (multivalued) resolvably 
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measurable, the question of the decomposition of an open–resolvable function into open [13] is similar to 
the question of the decomposition of a resolvably measurable function into continuous ones.

In the statement (in French) of Luzin’s problem from the article by L. Keldiš [8], presented for publication 
by Luzin himself, there are no constraints on the domain of definition X of the function f , and many 
authors consider X as a topological, not necessarily analytic, space. In addition, taking into account that 
the resolvable space is a topological rather than descriptive concept, we will speak in such situations of 
Luzin’s topological problem, a solution to which is given by Theorem 1.

Recall that a subset E of a space X is resolvable if for each nonempty subset F , closed in X, there holds:

F ∩ E ∩ F \ E �= F.

Resolvable sets are known as all sets in the difference hierarchy [9, §12,II]. In each Polish space, resolvable 
sets are exactly the sets that are both Fσ and Gδ (a brief account can be found in [3]).

We say that a function f is resolvably measurable if the inverse images of open sets are resolvable sets.
Recall that a function f : X → Y is countably continuous if X admits a countable cover C of X such 

that for each C ∈ C the restriction f |C is continuous [10].

Theorem 1. Each resolvably measurable function f : X → Y between subsets X and Y of the Cantor set C
is countably continuous.

Theorem 1 continues the series of publications [11], [12], [13] by the author.

Corollary 1. Each resolvably measurable function f : X → Y between subsets X and Y of real numbers R
is countably continuous.

Indeed, let us consider two countable sets: Q1 = f(X ∩ Q) and Q2 = f(X) ∩ Q, where Q is the set 
of rational numbers and denote Y1 = Y \ (Q1 ∪ Q2), X1 = f−1(Y1). The restriction f |X1 is a resolvably 
measurable function between two subspaces of the space of irrational numbers, which is homeomorphic to a 
subspace of C. By Theorem 1, f |X1 is countably continuous and, since Y \ Y1 is countable, f is countably 
continuous. �

In the rest of this paper it will be assumed that X and Y are subsets of the Cantor set C.

1. Definition of X∗

Let X∗ = X \
⋃

W∈B R(W ), where B is a countable clopen base of C and

R(W ) =
⋃

U∈B

{
U ∩ f−1(W ) : f |U ∩ f−1(W ) is countably continuous

}
.

Lemma 1.1. Let f : X → Y be a function that is not countably continuous; then, for every nonempty set 
I1 = U ∩ f−1(W ) ∩X∗, where W and U ∈ B, the restriction f |I1 is not countably continuous.

Proof. Since the base B is countable, f is countably continuous on X \X∗ =
⋃

W∈B R(W ) and, thus, on its 
subset I2 = f−1(W ) \X∗. If we suppose the opposite to the assertion of Lemma 1.1, namely, that f |I1 is 
countably continuous, then f is countably continuous on I1∪I2 = (U ∩f−1(W ) ∩X∗) ∪ (f−1(W ) \X∗), and 
thus, on its subset (U ∩ f−1(W ) ∩X∗) ∪ ((U ∩ f−1(W )) \X∗) = U ∩ f−1(W ). Since U ∩ f−1(W ) ⊂ R(W ), 
we obtain:

U ∩ f−1(W ) ∩X∗ ⊂ R(W ) ∩X∗.
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