Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A direct characterization of the monotone convergence space completion

Zhongxi Zhang^{a,*}, Qingguo Li^b

^a School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China
^b College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China

ARTICLE INFO

Article history: Received 20 July 2017 Received in revised form 10 August 2017 Accepted 13 August 2017 Available online 18 August 2017

Keywords: Monotone convergence space D-completion Tapered set Lower Vietoris topology

ABSTRACT

For a T_0 -space X and the set $\Gamma(X)$ of all closed subsets of X, the *d*-closure of all point closures of X in $\Gamma(X)$ endowed with the lower Vietoris topology is called the standard *D*-completion of X. In this paper, by introducing the notion of a tapered set, we present a direct characterization of the *D*-completion: the set of all tapered closed subsets of X endowed with the lower Vietoris topology is exactly the standard *D*-completion of X.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a directed set plays an important role in modeling of computation. It is known that a T_0 -space X is called sober if every irreducible closed subset is the closure of a singleton set. Analogously, if the closure of each directed subset of X (in the specialization order) is a point closure, then X is called a monotone convergence space. The concept of a monotone convergence space was introduced by Wyler [4] under the name of a d-space. Wyler also gave a construction for the d-space completion of every T_0 -space X, later called the D-completion: the smallest sub-dcpo of $\Gamma(X)$ (the set of all closed subsets of X) which contains all point closures, together with the lower Vietoris topology is a D-completion of X. This completion is a category reflection of the category of T_0 -spaces onto the full subcategory of d-spaces. Ershow [1] later showed that for any subspace X_0 of a d-space X, the smallest d-subspace of X containing X_0 is a D-completion of X_0 . In [3], Keimel and Lawson gave a general categorical construction via reflection functors for various completions of T_0 -spaces, and emphatically investigated the D-completion as a special case.

* Corresponding author. E-mail addresses: zhangzhongxi89@gmail.com (Z. Zhang), liqingguoli@aliyun.com (Q. Li).

It is known that the space of all irreducible closed subsets of a T_0 -space X is a sobrification of X. One question arises naturally: can we give a direct characterization of the *D*-completion? That is to say, what type of closed subsets of X is exactly the smallest sub-dcpo of $\Gamma(X)$ containing all point closures? This paper is set to answer this question.

2. Preliminaries

This section is an introduction to the concepts and results about monotone convergence spaces and the *D*-completion. For more details, refer to [2,3]. The topological spaces considered in this paper are all T_0 -spaces, and each space is endowed with the specialization order.

Definition 2.1. A T_0 -space is called a monotone convergence space (or *D*-space) if every directed subset has a supremum to which it converges.

Equivalently, a T_0 -space is a monotone convergence space iff it is a dcpo and all open sets are Scott open. For a topological space X, we denote the set of all open sets of X by $\mathcal{O}(X)$ and that of closed sets by $\Gamma(X)$. And for any subset A of X, cl(A) denotes the closure of A. Notice that a point closure $cl(\{x\}) = \downarrow x$.

 $\Gamma(X)$. And for any subset A of X, cl(A) denotes the closure of A. Notice that a point closure $cl(\{x\}) = \downarrow x$. Let $\Gamma(X)$ be endowed with the lower Vietoris topology $\mathcal{O}(\Gamma(X))$, generated by subbasic open sets of the form

$$\diamond U := \{ A \in \Gamma(X) : A \bigcap U \neq \emptyset \},\$$

where U ranges over $\mathcal{O}(X)$. A standard argument shows that the specialization order on $\Gamma(X)$ is the inclusion relation and $\Gamma(X)$ is a monotone convergence space. The subspace

$$X^s := \{A \in \Gamma(X) : A \text{ is irreducible}\}\$$

of $\Gamma(X)$, together with the function $\eta_X^s : X \to X^s$ defined by $\eta_X^s(x) = cl(\{x\})$, is the standard sobrification of the space X.

The *d*-closure of a subset *A* of a monotone convergence space *X*, denoted by $cl_d(A)$, is the smallest sub-dcpo containing *A*. The set *A* is called a *d*-dense subset of *X* if *X* is the smallest sub-dcpo containing *A*, i.e., $cl_d(A) = X$.

Definition 2.2. A monotone convergence space \widetilde{X} together with a topological embedding $j: X \to \widetilde{X}$ with j(X) a *d*-dense subset of \widetilde{X} is called a *D*-completion of the space *X*.

A *D*-completion (\tilde{X}, j) of *X* satisfies the universal property: for every continuous function $f : X \to Y$ mapping into a monotone convergence space *Y*, there exists a unique continuous function $\tilde{f} : \tilde{X} \to Y$ such that $f = \tilde{f} \circ j$, i.e., the following diagram commutes:

Define $\Psi(X) := \{cl(\{x\}) : x \in X\}$. Let $cl_d(\Psi(X))$ be the *d*-closure of $\Psi(X)$ in X^s , endowed with the subspace topology of X^s , and η_X be the corestriction of η_X^s from X to $cl_d(\Psi(X))$. Then $(cl_d(\Psi(X)), \eta_X)$ is called *the standard D-completion* of X. Since X^s is a sub-dcpo and subspace of $\Gamma(X)$, we have that $cl_d(\Psi(X))$ is also the *d*-closure of $\Psi(X)$ in $\Gamma(X)$ and a subspace of $\Gamma(X)$.

Download English Version:

https://daneshyari.com/en/article/5777758

Download Persian Version:

https://daneshyari.com/article/5777758

Daneshyari.com