A direct characterization of the monotone convergence space completion

Zhongxi Zhang ${ }^{\text {a,* }}$, Qingguo Li ${ }^{\text {b }}$
${ }^{a}$ School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China
${ }^{\text {b }}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China

A R T I C L E I N F O

Article history:

Received 20 July 2017
Received in revised form 10 August 2017
Accepted 13 August 2017
Available online 18 August 2017
Keywords:
Monotone convergence space
D-completion
Tapered set
Lower Vietoris topology

Abstract

For a T_{0}-space X and the set $\Gamma(X)$ of all closed subsets of X, the d-closure of all point closures of X in $\Gamma(X)$ endowed with the lower Vietoris topology is called the standard D-completion of X. In this paper, by introducing the notion of a tapered set, we present a direct characterization of the D-completion: the set of all tapered closed subsets of X endowed with the lower Vietoris topology is exactly the standard D-completion of X.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a directed set plays an important role in modeling of computation. It is known that a T_{0}-space X is called sober if every irreducible closed subset is the closure of a singleton set. Analogously, if the closure of each directed subset of X (in the specialization order) is a point closure, then X is called a monotone convergence space. The concept of a monotone convergence space was introduced by Wyler [4] under the name of a d-space. Wyler also gave a construction for the d-space completion of every T_{0}-space X, later called the D-completion: the smallest sub-dcpo of $\Gamma(X)$ (the set of all closed subsets of X) which contains all point closures, together with the lower Vietoris topology is a D-completion of X. This completion is a category reflection of the category of T_{0}-spaces onto the full subcategory of d-spaces. Ershov [1] later showed that for any subspace X_{0} of a d-space X, the smallest d-subspace of X containing X_{0} is a D-completion of X_{0}. In [3], Keimel and Lawson gave a general categorical construction via reflection functors for various completions of T_{0}-spaces, and emphatically investigated the D-completion as a special case.

[^0]It is known that the space of all irreducible closed subsets of a T_{0}-space X is a sobrification of X. One question arises naturally: can we give a direct characterization of the D-completion? That is to say, what type of closed subsets of X is exactly the smallest sub-dcpo of $\Gamma(X)$ containing all point closures? This paper is set to answer this question.

2. Preliminaries

This section is an introduction to the concepts and results about monotone convergence spaces and the D-completion. For more details, refer to $[2,3]$. The topological spaces considered in this paper are all T_{0}-spaces, and each space is endowed with the specialization order.

Definition 2.1. A T_{0}-space is called a monotone convergence space (or D-space) if every directed subset has a supremum to which it converges.

Equivalently, a T_{0}-space is a monotone convergence space iff it is a dcpo and all open sets are Scott open.
For a topological space X, we denote the set of all open sets of X by $\mathcal{O}(X)$ and that of closed sets by $\Gamma(X)$. And for any subset A of $X, c l(A)$ denotes the closure of A. Notice that a point closure $c l(\{x\})=\downarrow x$. Let $\Gamma(X)$ be endowed with the lower Vietoris topology $\mathcal{O}(\Gamma(X))$, generated by subbasic open sets of the form

$$
\diamond U:=\{A \in \Gamma(X): A \bigcap U \neq \emptyset\},
$$

where U ranges over $\mathcal{O}(X)$. A standard argument shows that the specialization order on $\Gamma(X)$ is the inclusion relation and $\Gamma(X)$ is a monotone convergence space. The subspace

$$
X^{s}:=\{A \in \Gamma(X): A \text { is irreducible }\}
$$

of $\Gamma(X)$, together with the function $\eta_{X}^{s}: X \rightarrow X^{s}$ defined by $\eta_{X}^{s}(x)=c l(\{x\})$, is the standard sobrification of the space X.

The d-closure of a subset A of a monotone convergence space X, denoted by $\operatorname{cl}_{d}(A)$, is the smallest sub-dcpo containing A. The set A is called a d-dense subset of X if X is the smallest sub-dcpo containing A, i.e., $c l_{d}(A)=X$.

Definition 2.2. A monotone convergence space \tilde{X} together with a topological embedding $j: X \rightarrow \tilde{X}$ with $j(X)$ a d-dense subset of \widetilde{X} is called a D-completion of the space X.

A D-completion (\tilde{X}, j) of X satisfies the universal property: for every continuous function $f: X \rightarrow Y$ mapping into a monotone convergence space Y, there exists a unique continuous function $\widetilde{f}: \widetilde{X} \rightarrow Y$ such that $f=\tilde{f} \circ j$, i.e., the following diagram commutes:

Define $\Psi(X):=\{c l(\{x\}): x \in X\}$. Let $c l_{d}(\Psi(X))$ be the d-closure of $\Psi(X)$ in X^{s}, endowed with the subspace topology of X^{s}, and η_{X} be the corestriction of η_{X}^{s} from X to $c l_{d}(\Psi(X))$. Then $\left(c l_{d}(\Psi(X)), \eta_{X}\right)$ is called the standard D-completion of X. Since X^{s} is a sub-dcpo and subspace of $\Gamma(X)$, we have that $c l_{d}(\Psi(X))$ is also the d-closure of $\Psi(X)$ in $\Gamma(X)$ and a subspace of $\Gamma(X)$.

Download Persian Version:
https://daneshyari.com/article/5777758

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zhangzhongxi89@gmail.com (Z. Zhang), liqingguoli@aliyun.com (Q. Li).

