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The lexicographically ordered square is not
monotonically star-finite

Yin-Zhu Gao, Wei-Xue Shi∗

Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China

Abstract

Monotone star-finiteness defined by Popvassilev and Porter is a stronger prop-
erty than countable compactness in Hausdorff spaces. A space X is monotoni-
cally star-finite if for any open cover U of X there exists a finite subset F (U )
of X such that X = st(F (U ),U ) and if V and U are open covers of X with V
refining U , then F (U ) ⊂ F (V ), where st(F (U ),U ) = ∪{U ∈ U : U∩F (U ) �=
∅}.

We show that the lexicographically ordered square is not monotonically
star-finite. This answers several questions posed in [S. G. Popvassilev, J. E.
Porter, Monotone properties defined from stars of open coverings, Topol. Appl.
169(2014), 87–98].
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1. Introduction

A Hausdorff space X is countably compact if and only if for any open cover
U of X there exists a finite subset F of X such that X = st(F,U ), where
st(F,U ) = ∪{U ∈ U : U ∩ F �= ∅}. In [4], Fleischman showed this charac-
terization of countable compactness. van Mill, Tkachuk and Wilson [7] call the
latter property star-finite.

Popvassilev and Porter introduce concepts of monotonically star-finite spaces
and monotonically star closed-and-discrete spaces in [8] and obtain some results
and interesting properties on these spaces. A space X is monotonically star-
finite (respectively, monotonically star closed-and-discrete) if for any open cover
U of X there exists a finite subset (respectively, a closed-and-discrete subset)
F (U ) of X such that X = st(F (U ),U ) and if V and U are open covers of X
with V refining U , then F (U ) ⊂ F (V ). The F is called a monotone star-finite
(respectively, monotone star closed-and-discrete) operator for X.
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