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1. Introduction

This paper is devoted to a systematic study of the general problem, which is as follows. Let f be a
continuous mapping of a dense set S of the topological space X into the topological space Y. Required to
find the necessary and sufficient conditions for continuous extension of f to the space X (i.e. existence a
continuous mapping F : X — Y such that F' [ S = f). This problem can be considered more widely, if the
continuous mapping is replaced be “almost” continuous. For example, we will consider the 6,-continuous

mapping.
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First sufficient condition for continuous extension of f to the space X into the regular space Y was
obtained by N. Bourbaki. In [5] was proved that this condition is not sufficient condition for no regular
space Y.

The necessary and sufficient conditions for continuous extension of f on the space X were obtained:

in [6] for metrizable compact spaces Y;
in [4] for compact spaces Y;

in [3] for Lindeléof spaces Y

in [8] for realcompact spaces Y;

in [3] for regular spaces Y.

So for a compact spaces Y we have the next result (see [4]).

Theorem 1.1 (Taimanov). Let f be a continuous mapping of a dense set S of a topological space X into a
compact space Y, then the following are equivalent:

1. f to have a continuous extension to X;
2. if A and B are disjoint closed subsets of Y then f=1(A)( f~1(B) = 0.

Consider the following

e Condition (x): if a family {Ag} of closed subsets of Y such that (; Ag = 0 implies (5 f~1(Ap) = 0.

So general result for a regular space Y is the following theorem [3].

Theorem 1.2 (Velichko). Let f be a continuous mapping of a dense set S of a topological space X into a
reqular space Y, then the following are equivalent:

1. f to have a continuous extension to X;
2. condition (x) holds.

Note that if Y is a Tychonoff space, then we have in condition (*) a closed subsets be replaced by zero-sets
of Y.

Theorem 1.3 (Velichko). Let f be a continuous mapping of a dense set S of the topological space X into a
Lindeléof space Y, then the following are equivalent:

1. f to have a continuous extension to X;
2. for any sequence {A;} of zero-sets of Y such that (), Ai = 0 implies (N, f~1(A;) = 0.

Note that the condition (*) is a necessary condition for continuous extension of f to X for any space Y.
Proposition 1.4. Let f have a continuous extension to X for a space Y. Then condition (x) holds.
Proof. Let F be a continuous extension to X for a space Y and {Ag} be a family of closed subsets of ¥’
such that [y Ag = 0. Fix 2 € X. There is 8 such that F'(z) ¢ Ag, hence there exists a neighborhood V'

of F(z) such that V(| Az = 0. Since F is continuous map, F~(V) is a neighborhood of z. It follows that
FAVYNF Y (Ag)=0and z ¢ f~1(4p). O
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