

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

# On extension functions for image space with different separation axioms $\stackrel{\bigstar}{\approx}$



ar Applica

Alexander V. Osipov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University, 16, S. Kovalevskaja street, 620219, Ekaterinburg, Russia

#### ARTICLE INFO

Article history: Received 18 April 2016 Accepted 8 October 2016 Available online xxxx

 $\begin{array}{c} MSC: \\ 54C40 \\ 54C35 \\ 54D60 \\ 54H11 \\ 46E10 \end{array}$ 

Keywords: S(n)-space Regular space Continuous function  $\theta_{\alpha}$ -continuous function  $U(\alpha)$ -space Regular  $U(\alpha)$ -space

### ABSTRACT

In this paper we study a sufficient conditions for continuous and  $\theta_{\alpha}$ -continuous extensions of f to space X for an image space Y with different separation axioms. © 2017 Published by Elsevier B.V.

#### 1. Introduction

This paper is devoted to a systematic study of the general problem, which is as follows. Let f be a continuous mapping of a dense set S of the topological space X into the topological space Y. Required to find the necessary and sufficient conditions for continuous extension of f to the space X (i.e. existence a continuous mapping  $F: X \mapsto Y$  such that  $F \upharpoonright S = f$ ). This problem can be considered more widely, if the continuous mapping is replaced be "almost" continuous. For example, we will consider the  $\theta_{\alpha}$ -continuous mapping.

<sup>&</sup>lt;sup>\*</sup> The research has been supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0006. *E-mail address:* OAB@list.ru.

First sufficient condition for continuous extension of f to the space X into the regular space Y was obtained by N. Bourbaki. In [5] was proved that this condition is not sufficient condition for no regular space Y.

The necessary and sufficient conditions for continuous extension of f on the space X were obtained:

- in [6] for metrizable compact spaces Y;
- in [4] for compact spaces Y;
- in [3] for Lindelëof spaces Y;
- in [8] for realcompact spaces Y;
- in [3] for regular spaces Y.
- So for a compact spaces Y we have the next result (see [4]).

**Theorem 1.1** (Taimanov). Let f be a continuous mapping of a dense set S of a topological space X into a compact space Y, then the following are equivalent:

- 1. f to have a continuous extension to X;
- 2. if A and B are disjoint closed subsets of Y then  $\overline{f^{-1}(A)} \cap \overline{f^{-1}(B)} = \emptyset$ .

Consider the following

• Condition (\*): if a family  $\{A_{\beta}\}$  of closed subsets of Y such that  $\bigcap_{\beta} A_{\beta} = \emptyset$  implies  $\bigcap_{\beta} \overline{f^{-1}(A_{\beta})} = \emptyset$ .

So general result for a regular space Y is the following theorem [3].

**Theorem 1.2** (Velichko). Let f be a continuous mapping of a dense set S of a topological space X into a regular space Y, then the following are equivalent:

- 1. f to have a continuous extension to X;
- 2. condition (\*) holds.

Note that if Y is a Tychonoff space, then we have in condition (\*) a closed subsets be replaced by zero-sets of Y.

**Theorem 1.3** (Velichko). Let f be a continuous mapping of a dense set S of the topological space X into a Lindelë of space Y, then the following are equivalent:

- 1. f to have a continuous extension to X;
- 2. for any sequence  $\{A_i\}$  of zero-sets of Y such that  $\bigcap_i A_i = \emptyset$  implies  $\bigcap_i \overline{f^{-1}(A_i)} = \emptyset$ .

Note that the condition (\*) is a necessary condition for continuous extension of f to X for any space Y.

**Proposition 1.4.** Let f have a continuous extension to X for a space Y. Then condition (\*) holds.

**Proof.** Let F be a continuous extension to X for a space Y and  $\{A_{\beta}\}$  be a family of closed subsets of Y such that  $\bigcap_{\beta} A_{\beta} = \emptyset$ . Fix  $x \in X$ . There is  $\beta$  such that  $F(x) \notin A_{\beta}$ , hence there exists a neighborhood V of F(x) such that  $V \bigcap A_{\beta} = \emptyset$ . Since F is continuous map,  $F^{-1}(V)$  is a neighborhood of x. It follows that  $F^{-1}(V) \bigcap F^{-1}(A_{\beta}) = \emptyset$  and  $x \notin \overline{f^{-1}(A_{\beta})}$ .  $\Box$ 

Download English Version:

## https://daneshyari.com/en/article/5777913

Download Persian Version:

### https://daneshyari.com/article/5777913

Daneshyari.com