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In this paper we study a sufficient conditions for continuous and θα-continuous 
extensions of f to space X for an image space Y with different separation axioms.
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1. Introduction

This paper is devoted to a systematic study of the general problem, which is as follows. Let f be a 
continuous mapping of a dense set S of the topological space X into the topological space Y . Required to 
find the necessary and sufficient conditions for continuous extension of f to the space X (i.e. existence a 
continuous mapping F : X �→ Y such that F � S = f). This problem can be considered more widely, if the 
continuous mapping is replaced be “almost” continuous. For example, we will consider the θα-continuous 
mapping.
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First sufficient condition for continuous extension of f to the space X into the regular space Y was 
obtained by N. Bourbaki. In [5] was proved that this condition is not sufficient condition for no regular 
space Y .

The necessary and sufficient conditions for continuous extension of f on the space X were obtained:

in [6] for metrizable compact spaces Y ;

in [4] for compact spaces Y ;

in [3] for Lindelëof spaces Y ;

in [8] for realcompact spaces Y ;

in [3] for regular spaces Y .

So for a compact spaces Y we have the next result (see [4]).

Theorem 1.1 (Taimanov). Let f be a continuous mapping of a dense set S of a topological space X into a 
compact space Y , then the following are equivalent:

1. f to have a continuous extension to X;
2. if A and B are disjoint closed subsets of Y then f−1(A)

⋂
f−1(B) = ∅.

Consider the following

• Condition (∗): if a family {Aβ} of closed subsets of Y such that 
⋂

β Aβ = ∅ implies 
⋂

β f
−1(Aβ) = ∅.

So general result for a regular space Y is the following theorem [3].

Theorem 1.2 (Velichko). Let f be a continuous mapping of a dense set S of a topological space X into a 
regular space Y , then the following are equivalent:

1. f to have a continuous extension to X;
2. condition (∗) holds.

Note that if Y is a Tychonoff space, then we have in condition (∗) a closed subsets be replaced by zero-sets 
of Y .

Theorem 1.3 (Velichko). Let f be a continuous mapping of a dense set S of the topological space X into a 
Lindelëof space Y , then the following are equivalent:

1. f to have a continuous extension to X;
2. for any sequence {Ai} of zero-sets of Y such that 

⋂
i Ai = ∅ implies 

⋂
i f

−1(Ai) = ∅.

Note that the condition (∗) is a necessary condition for continuous extension of f to X for any space Y .

Proposition 1.4. Let f have a continuous extension to X for a space Y . Then condition (∗) holds.

Proof. Let F be a continuous extension to X for a space Y and {Aβ} be a family of closed subsets of Y
such that 

⋂
β Aβ = ∅. Fix x ∈ X. There is β such that F (x) /∈ Aβ , hence there exists a neighborhood V

of F (x) such that V
⋂
Aβ = ∅. Since F is continuous map, F−1(V ) is a neighborhood of x. It follows that 

F−1(V ) 
⋂
F−1(Aβ) = ∅ and x /∈ f−1(Aβ). �
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