

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – Proceedings on the International Conference on Set-Theoretic Topology and its Applications, Yokohama 2015

Finite-valued multiselections

Valentin Gutev

Department of Mathematics, Faculty of Science, University of Malta, Msida MSD 2080, Malta

ARTICLE INFO

Article history: Received 22 December 2015 Received in revised form 24 May 2016 Accepted 27 May 2016 Available online 21 April 2017

MSC: 54B20 54C60 54C65

54D05 54F05

Keywords: Vietoris topology Multiselection Weak selection Weak orderability

ABSTRACT

It is shown that a connected space X is weakly orderable provided it has a finite-valued Vietoris continuous multiselection for its hyperspace $\mathscr{F}(X)$ of nonempty closed subsets. In fact, for connected spaces, every such multiselection is at most two-point valued, and X is compact whenever the multiselection is not singleton-valued at some element of $\mathscr{F}(X)$. Complementary to this result is a characterisation of weak orderability of connected spaces in terms of "proper" Vietoris continuous multiselections for hyperspaces of finite sets.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All spaces are assumed to be infinite Hausdorff topological spaces. Let $\mathscr{F}(X)$ be the collection of all nonempty closed subsets of a space X. Each subcollection $\mathscr{D} \subset \mathscr{F}(X)$ will carry the (relative) Vietoris topology τ_V , and will be simply called a hyperspace. The basic τ_V -neighbourhoods for this topology on \mathscr{D} are the sets

$$\langle \mathscr{V} \rangle = \left\{ S \in \mathscr{D} : S \subset \bigcup \mathscr{V} \ \text{ and } \ S \cap V \neq \varnothing, \text{ whenever } V \in \mathscr{V} \right\},$$

where \mathscr{V} runs over the finite families of open subsets of X.

For spaces Z and X, a set-valued mapping $\varphi: Z \to \mathscr{F}(X)$ is lower semi-continuous, or l.s.c., if the set

$$\varphi^{-1}[U] = \{ z \in Z : \varphi(z) \cap U \neq \emptyset \}$$

E-mail address: valentin.gutev@um.edu.mt.

is open in Z for every open $U \subset X$; and φ is upper semi-continuous, or u.s.c., if $\varphi^{-1}[F]$ is closed in Z for every closed $F \subset X$. A mapping $\varphi : Z \to \mathscr{F}(X)$ is called continuous (sometimes also Vietoris continuous, or τ_V -continuous) if it is both l.s.c. and u.s.c. Accordingly, $\varphi : Z \to \mathscr{F}(X)$ is continuous if and only if it is continuous as a usual map from Z to the hyperspace $(\mathscr{F}(X), \tau_V)$.

A map $f: \mathscr{D} \to X$ is a selection for $\mathscr{D} \subset \mathscr{F}(X)$ if $f(S) \in S$ for every $S \in \mathscr{D}$, and f is continuous if it is continuous with respect to the relative Vietoris topology τ_V on \mathscr{D} . In the present paper, we are interested in set-valued selections for hyperspaces. We shall say that a mapping $\varphi: \mathscr{D} \to \mathscr{F}(X)$ is a multiselection (or a set-valued selection) for $\mathscr{D} \subset \mathscr{F}(X)$ if $\varphi(S) \subset S$ for every $S \in \mathscr{D}$. In these terms, we say that φ is τ_V -l.s.c. (respectively, τ_V -u.s.c.) if it is l.s.c. (respectively, u.s.c.) as a set-valued mapping from the hyperspace (\mathscr{D}, τ_V) to $\mathscr{F}(X)$. A multiselection $\varphi: \mathscr{D} \to \mathscr{F}(X)$ which is both τ_V -l.s.c. and τ_V -u.s.c. will be called τ_V -continuous being a continuous map from (\mathscr{D}, τ_V) to $(\mathscr{F}(X), \tau_V)$. It should be remarked that $\mathscr{F}(X)$ always has a τ_V -continuous multiselection, one can merely take the identity of $\mathscr{F}(X)$. However, if extra properties on the values of the multiselection are required, then the corresponding selection problem may characterise certain spaces. For instance, each continuous selection $f: \mathscr{F}(X) \to X$ can be considered as a τ_V -continuous multiselection by letting $\varphi(S) = \{f(S)\}$, $S \in \mathscr{F}(X)$. Let

$$\mathscr{C}(X) = \{ S \in \mathscr{F}(X) : S \text{ is compact} \}.$$

Compact-valued multiselections have been useful in showing that a metrizable space X is completely metrizable if and only if it has a τ_V -u.s.c. multiselection $\theta : \mathscr{F}(X) \to \mathscr{C}(X)$, see [10, Theorem 7.1] and [3, Corollary 7.5]. For some open questions on τ_V -continuous multiselections for hyperspaces on compact scattered spaces, the interested reader is referred to [4], see also [5].

A space X is orderable (or linearly ordered) if it has the open interval topology generated by some linear order on X. A space X is weakly orderable (KOTS in the terminology of [11]; and sometimes called also "Eilenberg orderable") if it has a coarser open interval topology. Whenever $n \geq 1$, let

$$\mathscr{F}_n(X) = \{ S \in \mathscr{F}(X) : |S| \le n \}.$$

A selection $\sigma: \mathscr{F}_2(X) \to X$ is often called a weak selection for X. If X is connected and has a continuous weak selection σ , then it is weakly orderable. In this case, the relation $x \preceq_{\sigma} y$ defined by $\sigma(\{x,y\}) = x$, is a compatible linear order on X, i.e. X is weakly orderable with respect to $\preceq_{\sigma} [8, \text{Lemma 7.2}]$. However, in general, \preceq_{σ} is not necessarily transitive. Treating selections as singleton-valued multiselections, (continuous) weak selections for X are identical to $(\tau_V$ -continuous) multiselections $\varphi: \mathscr{F}_2(X) \to \mathscr{F}_1(X)$. In the presence of connectedness, the role of such multiselections is preserved for arbitrary $n \geq 1$ as our first result asserts.

Theorem 1.1. Let X be a connected space which has a τ_V -continuous multiselection $\varphi : \mathscr{F}_{n+1}(X) \to \mathscr{F}_n(X)$ for some $n \geq 1$. Then X is weakly orderable.

The converse of Theorem 1.1 is also true. Namely, if X is weakly orderable, then $\mathscr{F}_{n+1}(X)$ has a continuous selection for every $n \geq 1$ [8, Lemma 7.5.1]; the same is also valid for $\mathscr{C}(X)$. Complementary to Theorem 1.1 is now the following result for the nonempty finite subsets $\Sigma(X) = \bigcup_{n \geq 1} \mathscr{F}_n(X)$.

Theorem 1.2. Let X be a connected space which has a τ_V -continuous multiselection $\varphi : \mathscr{F}(X) \to \Sigma(X)$. If φ is not singleton-valued at some element of $\mathscr{F}(X)$, then X is compact and orderable.

The statements of Theorems 1.1 and 1.2 appear to be the best possible in several respects. Here is an example showing that both theorems fail if " τ_V -continuity" of the multiselection is relaxed to " τ_V -semi-continuity".

Download English Version:

https://daneshyari.com/en/article/5777940

Download Persian Version:

https://daneshyari.com/article/5777940

<u>Daneshyari.com</u>