Virtual Special Issue - Dedicated to the 120th anniversary of the eminent Russian mathematician P.S. Alexandroff

Convex sections of rectangular sets and splitting of selections

Pavel V. Semenov
Dept. of Math, National Research University Higher School of Economics, 119048, Usacheva str., 6, Moscow, 119048, Russia

A R T I C L E I N F O

Article history:
Received 7 April 2016
Accepted 13 July 2016
Available online 14 February 2017

MSC:

primary $47 \mathrm{H} 10,54 \mathrm{H} 25$
secondary 47H09, 54E50
Keywords:
Multivalued mappings
Continuous selections
Linear operators
Banach spaces

Abstract

In this paper we provide some affirmative results and some counterexamples for a solution of the splitting problem for n multivalued mappings, $n>2$.

© 2017 Elsevier B.V. All rights reserved.

1. Preliminaries

To an n-tuple of multivalued mappings $F_{k}: X \rightarrow Y_{k}, k=1,2, \ldots, n$, and a singlevalued mapping $L: \oplus Y_{k} \rightarrow Y$ one can associate the composite multivalued mapping, say $L \circ\left(\oplus F_{k}\right): X \rightarrow Y$, which associates to each $x \in X$ the set

$$
\left\{y \in Y: y=L\left(y_{1} ; \ldots ; y_{n}\right), y_{k} \in F_{k}(x), k=1,2, \ldots, n\right\} .
$$

Definition 1.1. Let $f: X \rightarrow Y$ be a selection of the composite mapping $L \circ\left(\oplus F_{k}\right)$. An n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ is said to be a splitting of f if $f_{k}: Y_{k} \rightarrow Y$ is a selection of $F_{k}, k=1,2, \ldots, n$, and $f(x)=L\left(f_{1}(x) ; \ldots ; f_{n}(x)\right)$, $x \in X$.

Recall that a single-valued mapping $f: X \rightarrow Y$ is said to be a selection of a multivalued mapping $F: X \rightarrow Y$ provided that $f(x) \in F(x)$, for every $x \in X$. Having in mind the celebrated convexvalued selection theorem of Michael [7], below we focus on the case of continuous singlevalued selections of convexand closedvalued LSC mappings from paracompact domains to Banach spaces.

[^0]As an example, let $C_{k}, k=1,2, \ldots, n$ be convex closed subsets of \mathbb{R}^{N}, let $L: \mathbb{R}^{N} \oplus \ldots \oplus \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be linear, $X=L\left(C_{1}, \ldots, C_{n}\right)$ be the result of Minkowsky pointwise vector operation in the space \mathbb{R}^{N} and $F_{k}(\cdot) \equiv C_{k}, k=1,2, \ldots, n$. Clearly, $L \circ\left(\oplus F_{k}\right)(\cdot) \equiv X$ and the identity mapping $f=\left.i d\right|_{X}$ is a continuous selection of $L \circ\left(\oplus F_{k}\right)$. So, a splitting of $f=\left.i d\right|_{X}$ gives a singlevalued solution $\left(y_{1}, \ldots, y_{n}\right)$ of the classical linear equation

$$
L\left(y_{1}, \ldots, y_{n}\right)=y, \quad y_{1} \in C_{1}, \ldots, y_{n} \in C_{n}
$$

which continuously depends on the data y.
As pointed out in $[2,3]$, the question of an existence of splitting is closely related to various tasks of set-valued analysis, e.g. parametrization of multivalued mappings [1,9], see also [5,6,8]. The notion of splitting was introduced in [10]. This notion first appeared in personal communication with Prof. U. Marconi, who asked about a representation of an ε-selection of $F_{1}+F_{2}$ as the sum of ε-selections of $F_{i}, i=1,2$.

So, for fixed multivalued mappings $F_{k}: X \rightarrow Y_{k}, k=1,2, \ldots, n$, and for a linear map $L: \oplus Y_{k} \rightarrow Y$, the splitting problem is the question of finding suitable $\left(f_{1}, \ldots, f_{n}\right)$ for any selection $f: X \rightarrow Y$ of $L \circ\left(\oplus F_{k}\right)$, meanwhile for spaces Y_{1}, \ldots, Y_{n}, Y the splitting problem means the splitting problem for arbitrary LSC mappings $F_{k}: X \rightarrow Y_{k}, k=1,2, \ldots, n$ of a paracompact domain X and linear mappings $L: \oplus Y_{k} \rightarrow Y$.

Formally, the splitting problem for mappings can be easily reduced to a selection problem. Namely, for a fixed multivalued mappings $F_{k}: X \rightarrow Y_{k}, k=1,2, \ldots, n$, and for a linear $L: \oplus Y_{k} \rightarrow Y$ the following are equivalent:
(a) $\left(f_{1}, \ldots, f_{n}\right)$ splits a selection f of $L \circ\left(\oplus F_{k}\right)$;
(b) $\left(f_{1}(x), \ldots, f_{n}(x)\right) \in L^{-1}(f(x)) \bigcap\left(\oplus F_{k}(x)\right), x \in X$.

Clearly, all sets $L^{-1}(f(x)) \bigcap\left(\oplus F_{k}(x)\right), x \in X$, are nonempty, convex and closed. So, modulo Michael's selection theorem, in order to deduce (a) from (b) one in fact, needs the lower semicontinuity of the associated mapping $x \mapsto L^{-1}(f(x)) \bigcap\left(\oplus F_{k}(x)\right), x \in X$. But the lower semicontinuity property is too unstable with respect to the pointwise intersection of multivalued mappings. This is the principal and significant obstacle for finding of a splitting.

Known positive results [2-4,8,10,11] for the case $n=2$ as a rule exploit some linking properties of values $F_{1}(\cdot), F_{2}(\cdot)$ and $\operatorname{Ker} L$ together. For example, splitting problem can be successfully resolved for constant mappings $F_{1}(\cdot) \equiv A \subset Y_{1}, F_{2}(\cdot) \equiv B \subset Y_{2}$ with finite-dimensional strictly convex A and B and with $\operatorname{Ker} L$ which is transversal to $Y_{1} \times 0$ and $0 \times Y_{2}$ in $Y_{1} \oplus Y_{2}$, ([11], Theorem 3.5). For a generalizations of this fact to the case of Hausdorff continuous strictly convex-valued mappings see ([2], Theorem 2.10) and uniformly (or, weakly) convex-valued mappings ([4], Example 4.1)

The positive answer to the splitting problem not for mappings $\left(F_{k}, k=1,2, \ldots, n, L\right)$ but for spaces $\left(Y_{k}, Y\right)$ is quite rare, maybe because there are too many universal quantifiers in its statement: $\forall X, \forall F_{k}, \forall L, \forall f, \exists \ldots$ Examples in Section 3 show that except the case $Y_{1}=\ldots=Y_{n}=Y=\mathbb{R}$ the splitting problem, in general, admits negative solutions. In ([10] Theorem 3.1) it was proved that splitting is always possible for spaces $Y_{1}=Y_{2}=Y=\mathbb{R}$. Here we propose a generalization to the case of an arbitrary $n \in \mathbb{N}$, see Theorem 2.4 below.

Remark: It is natural to try to prove this theorem by induction with the base $n=2$. Unfortunately, even the first reduction from $n=3$ to $n=2$ in general doesn't work because for $Y_{1}=\mathbb{R}^{2}, Y_{2}=Y=\mathbb{R}$ negative answers for splitting are possible, see Proposition 3.3 below. So the independent proof for the case of an arbitrary $n \in \mathbb{N}$ is based on a good "tomography" of convex rectangular subsets of \mathbb{R}^{n}, i.e. sets which coincide with the Cartesian product of their projections onto the coordinate lines.

Ending the introduction we recall that lower semicontinuity of a multivalued mapping $F: X \rightarrow Y$ between topological spaces X and Y means that for each pair of points $x \in X$ and $y \in F(x)$, and each

https://daneshyari.com/en/article/5778008

Download Persian Version:
https://daneshyari.com/article/5778008

Daneshyari.com

[^0]: E-mail address: pavels@orc.ru.
 http://dx.doi.org/10.1016/j.topol.2017.02.062
 0166-8641/© 2017 Elsevier B.V. All rights reserved.

