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In this paper we provide some affirmative results and some counterexamples for a 
solution of the splitting problem for n multivalued mappings, n > 2.
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1. Preliminaries

To an n-tuple of multivalued mappings Fk : X → Yk, k = 1, 2, . . . , n, and a singlevalued mapping 
L : ⊕Yk → Y one can associate the composite multivalued mapping, say L ◦ (⊕Fk) : X → Y , which 
associates to each x ∈ X the set

{y ∈ Y : y = L(y1; ...; yn), yk ∈ Fk(x), k = 1, 2, . . . , n}.

Definition 1.1. Let f : X → Y be a selection of the composite mapping L ◦ (⊕Fk). An n-tuple (f1, . . . , fn) is 
said to be a splitting of f if fk : Yk → Y is a selection of Fk, k = 1, 2, . . . , n, and f(x) = L(f1(x); ...; fn(x)), 
x ∈ X.

Recall that a single-valued mapping f : X → Y is said to be a selection of a multivalued mapping 
F : X → Y provided that f(x) ∈ F (x), for every x ∈ X. Having in mind the celebrated convexvalued 
selection theorem of Michael [7], below we focus on the case of continuous singlevalued selections of convex-
and closedvalued LSC mappings from paracompact domains to Banach spaces.
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As an example, let Ck, k = 1, 2, . . . , n be convex closed subsets of RN , let L : RN ⊕ ... ⊕ R
N → R

N

be linear, X = L(C1, . . . , Cn) be the result of Minkowsky pointwise vector operation in the space RN and 
Fk(·) ≡ Ck, k = 1, 2, . . . , n. Clearly, L ◦ (⊕Fk)(·) ≡ X and the identity mapping f = id|X is a continuous 
selection of L ◦ (⊕Fk). So, a splitting of f = id|X gives a singlevalued solution (y1, . . . , yn) of the classical 
linear equation

L(y1, . . . , yn) = y, y1 ∈ C1, . . . , yn ∈ Cn

which continuously depends on the data y.
As pointed out in [2,3], the question of an existence of splitting is closely related to various tasks of 

set-valued analysis, e.g. parametrization of multivalued mappings [1,9], see also [5,6,8]. The notion of splitting 
was introduced in [10]. This notion first appeared in personal communication with Prof. U. Marconi, who 
asked about a representation of an ε-selection of F1 + F2 as the sum of ε-selections of Fi, i = 1, 2.

So, for fixed multivalued mappings Fk : X → Yk, k = 1, 2, . . . , n, and for a linear map L : ⊕Yk → Y , the 
splitting problem is the question of finding suitable (f1, . . . , fn) for any selection f : X → Y of L ◦ (⊕Fk), 
meanwhile for spaces Y1, . . . , Yn, Y the splitting problem means the splitting problem for arbitrary LSC 
mappings Fk : X → Yk, k = 1, 2, . . . , n of a paracompact domain X and linear mappings L : ⊕Yk → Y .

Formally, the splitting problem for mappings can be easily reduced to a selection problem. Namely, for 
a fixed multivalued mappings Fk : X → Yk, k = 1, 2, . . . , n, and for a linear L : ⊕Yk → Y the following are 
equivalent:

(a) (f1, . . . , fn) splits a selection f of L ◦ (⊕Fk);
(b) (f1(x), . . . , fn(x)) ∈ L−1(f(x)) 

⋂
(⊕Fk(x)), x ∈ X.

Clearly, all sets L−1(f(x)) 
⋂

(⊕Fk(x)), x ∈ X, are nonempty, convex and closed. So, modulo Michael’s 
selection theorem, in order to deduce (a) from (b) one in fact, needs the lower semicontinuity of the associated 
mapping x �→ L−1(f(x)) 

⋂
(⊕Fk(x)), x ∈ X. But the lower semicontinuity property is too unstable with 

respect to the pointwise intersection of multivalued mappings. This is the principal and significant obstacle 
for finding of a splitting.

Known positive results [2–4,8,10,11] for the case n = 2 as a rule exploit some linking properties of values 
F1(·), F2(·) and KerL together. For example, splitting problem can be successfully resolved for constant 
mappings F1(·) ≡ A ⊂ Y1, F2(·) ≡ B ⊂ Y2 with finite-dimensional strictly convex A and B and with KerL
which is transversal to Y1 × 0 and 0 × Y2 in Y1 ⊕ Y2, ([11], Theorem 3.5). For a generalizations of this fact 
to the case of Hausdorff continuous strictly convex-valued mappings see ([2], Theorem 2.10) and uniformly 
(or, weakly) convex-valued mappings ([4], Example 4.1)

The positive answer to the splitting problem not for mappings (Fk, k = 1, 2, . . . , n, L) but for 
spaces (Yk, Y ) is quite rare, maybe because there are too many universal quantifiers in its statement: 
∀X, ∀Fk, ∀L, ∀f, ∃ . . . . Examples in Section 3 show that except the case Y1 = ... = Yn = Y = R the splitting 
problem, in general, admits negative solutions. In ([10] Theorem 3.1) it was proved that splitting is always 
possible for spaces Y1 = Y2 = Y = R. Here we propose a generalization to the case of an arbitrary n ∈ N, 
see Theorem 2.4 below.

Remark: It is natural to try to prove this theorem by induction with the base n = 2. Unfortunately, 
even the first reduction from n = 3 to n = 2 in general doesn’t work because for Y1 = R

2, Y2 = Y = R

negative answers for splitting are possible, see Proposition 3.3 below. So the independent proof for the case 
of an arbitrary n ∈ N is based on a good “tomography” of convex rectangular subsets of Rn, i.e. sets which 
coincide with the Cartesian product of their projections onto the coordinate lines.

Ending the introduction we recall that lower semicontinuity of a multivalued mapping F : X → Y

between topological spaces X and Y means that for each pair of points x ∈ X and y ∈ F (x), and each 
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