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Let P denote the pseudo-arc and let F2(P ) = {{p, q} : p, q ∈ P} denote the second 
symmetric product of P . The main result in this paper is the following: if E :
F2(P ) → F2(P ) is an embedding, then there is an embedding e : P → P such that 
E({p, q}) = {e(p), e(q)}. We obtain that the autohomeomorphisms of F2(P ) are 
induced, P has rigid hyperspace F2(P ), and the degree of homogeneity of F2(P ) is 
exactly 3.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A continuum is a nondegenerate compact connected metric space and a mapping means a continuous 
function. Given a continuum X, the nth-symmetric product is defined as the hyperspace Fn(X) = {A ⊂ X :
1 ≤ |A| ≤ n}, with the Vietoris topology [9].

The pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. It can be charac-
terized as the unique hereditarily indecomposable chainable continuum. For the history and an overview of 
the pseudo-arc, see Lewis’ survey paper [11]. In this paper we will denote the pseudo-arc by P .
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One of the most interesting and unexpected properties of the pseudo-arc is that it is homogeneous, as 
was proved by Bing [2]. Clearly, the square of the pseudo-arc, P × P , is also homogeneous. However, in [1], 
it was proved that there is certain rigidity in P ×P . Namely, every autohomeomorphism of P ×P is of one 
of the two forms h = h0 ×h1 or i ◦ (h0 ×h1), where h0, h1 : P → P are homeomorphisms and i(p, q) = (q, p)
for all p, q ∈ P . This result has been extended [3] to embeddings of P × P to itself in the natural way (see 
Theorem 3.1 below).

A mapping G : Fn(X) → Fn(X) is induced by a mapping g : X → X if for each A ∈ Fn(X), G(A) = g(A)
(the image of A under g).

The continuum X has rigid hyperspace Fn(X) if for each homeomorphism G : Fn(X) → Fn(X) we 
have G(F1(X)) = F1(X). This notion was introduced in [4,5] and [6] and was used to study uniqueness of 
hyperspaces.

The degree of homogeneity of the continuum X is the number of orbits of the action of the group of 
homeomorphisms of X onto itself. In recent years, the degree of homogeneity has been widely studied. In 
particular, in [13], some continua X for which the degree of homogeneity of F2(X) is exactly 2 have been 
obtained. In [7], the second-named author and Verónica Martínez-de-la-Vega have determined the degree of 
homogeneity of symmetric products of some continua, including simple closed curves and manifolds.

In this paper we are mainly interested in determining the nature of autohomeomorphisms of F2(P ). We 
prove that embeddings from F2(P ) into itself are induced, so this property also holds for autohomeomor-
phisms of F2(P ). We also show that P has rigid hyperspace F2(P ), and that the degree of homogeneity of 
F2(P ) is exactly 3.

2. Preliminaries

For a reference on continuum theory and hyperspaces, see [9] and [12], respectively. Let N denote the set 
of positive integers. If X is a space, the closure of a subset A of X will be denoted by clX(A). If X is a 
metric space with metric d, p ∈ X and r > 0, let Bd(p, r) = {q ∈ X : d(p, q) < r}.

Given a continuum X, besides the hyperspace Fn(X), we will use also the hyperspace of subcontinua of 
X which is defined by

C(X) = {A ⊂ X : A is nonempty, closed and connected}.

Both hyperspaces, Fn(X) and C(X), are considered with the Vietoris topology.
Fix a hyperspace K(X) of some continuum X. Given U1, . . . , Um ⊂ X, let

〈U1, . . . , Um〉 = {A ∈ K(X) : A ⊂ U1 ∪ . . . ∪ Um and A ∩ Uj �= ∅ for all j ≤ m}.

Let us recall that 〈U1, . . . , Um〉 is open in K(X) whenever U1, . . . , Um are open sets in X. Whenever d is 
a metric on X, there exists a metric defined on K(X) generating the Vietoris topology, called the Hausdorff 
metric [9, p. 9], and we will denote it by Hd. Both, the definition of the sets 〈U1, . . . , Um〉 and the Hausdorff 
metric depend on which hyperspace K(X) represents, but this will usually not cause confusion.

We will need the following lemma whose proof is standard so we will not include it.

Lemma 2.1. Let X be a continuum, m ≤ n positive integers, and let U1, . . . , Um be pairwise disjoint nonempty 
open subsets of X. Then every component of 〈U1, . . . , Um〉 in Fn(X) is of the form 〈C1, . . . , Cm〉, where Ci

is a component of Ui for each i ≤ m.

In [9, Theorem 14.6] it is shown that if X is a continuum, A, B ∈ C(X) and A � B, then there is an order 
arc from A to B; namely, there is a continuous function α : [0, 1] → C(X) such that α(0) = A, α(1) = B, 
and if 0 ≤ s < t ≤ 1, then α(s) � α(t).
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