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While much of the current study on quantum computation employs low-level 
formalisms such as quantum circuits, several high-level languages/calculi have been 
recently proposed aiming at structured quantum programming. The current work 
contributes to the semantical study of such languages by providing interaction-based 
semantics of a functional quantum programming language; the latter is, much like 
Selinger and Valiron’s, based on linear lambda calculus and equipped with features 
like the ! modality and recursion. The proposed denotational model is the first 
one that supports the full features of a quantum functional programming language; 
we prove adequacy of our semantics. The construction of our model is by a series 
of existing techniques taken from the semantics of classical computation as well 
as from process theory. The most notable among them is Girard’s Geometry of 
Interaction (GoI), categorically formulated by Abramsky, Haghverdi and Scott. 
The mathematical genericity of these techniques—largely due to their categorical 
formulation—is exploited for our move from classical to quantum.
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1. Introduction

1.1. Quantum programming languages

Computation and communication using quantum data has attracted growing attention. On the one hand, 
quantum computation provides a real breakthrough in computing power—at least for certain applications—
as demonstrated by Shor’s algorithm. On the other hand, quantum communication realizes “unconditional 
security” e.g. via quantum key distribution. Quantum communication is being physically realized and put 
into use.

The extensive research efforts on this new paradigm have identified some challenges, too. On quantum 
computation, aside from a few striking ones such as Shor’s and quantum search algorithms, researchers 
are having a hard time finding new “useful” algorithms. On quantum communication, the counter-intuitive 
nature of quantum data becomes an additional burden in the task of getting communication protocols 
right—which has proved extremely hard already with classical data.

Structured programming and mathematically formulated semantics are potentially useful tools against 
these difficulties. Structured programming often leads to discovery of ingenious algorithms; well-formulated 
semantics would provide a ground for proving a communication protocol correct.

In this direction, there have been proposed several high-level languages tailored for quantum computation 
(see [79] for an excellent survey). Among the first ones is QCL [63] that is imperative; the quantum IO 
monad [32] and its successor Quipper [33] are quantum extensions of Haskell that facilitate generation of 
quantum circuits. Closely related to the latter two is the one in [22], that is an (intuitionistic) λ-calculus 
with quantum stores.

Another important family—that is most strongly oriented towards mathematical semantics—is those 
of quantum λ-calculi that are very often based on linear λ-calculus. While λ-calculus is a prototype of 
functional programming languages and inherently supports higher-order computation, linearity in a type 
system provides a useful means of prohibiting duplication of quantum data (“no-cloning”). Examples of 
such languages are found in [14,16,31,73–75,81].

1.2. Denotational semantics of quantum programming languages

Models of linear logic (and hence of linear λ-calculus) have been studied fairly well since 1990s; therefore 
denotational models for the last family of quantum programming languages may well be based on those 
well-studied models. Presence of quantum primitives—or more precisely coexistence of “quantum data, 
classical control”—poses unique challenges, however. It thus seems that denotational semantics for quantum 
λ-calculi has attracted research efforts, not only from those interested in quantum computation, but also 
from the semantics community in general, since it offers unique and interesting “exercises” to the semantical 
techniques developed over many years, many of which are formulated in categorical terms and hence are 
aimed at genericity.

Consider a quantum λ-calculus that is essentially a linear λ-calculus with quantum primitives. It is 
standard that compact closed categories provide models for the latter; so we are aiming a compact closed 
category 1) with a quantum flavor, and 2) that allows interpretation of the ! modality that is essential in 
duplicating classical data. This turns out to be not easy at all. For example, the requirement 1) makes 
one hope that the category fdHilb of finite-dimensional Hilbert spaces and linear maps would work. This 
category however has no convenient “infinity” structure that can be exploited for the requirement 2). Moving 
to the category Hilb of possibly infinite-dimensional Hilbert spaces does not work either, since it is not 
compact closed.

A few attempts have been made to address this difficulty. In [74] a categorical model is presented that is 
fully abstract for the !-free fragment of a quantum λ-calculus is presented. It relies on Selinger’s category 
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