
Annals of Pure and Applied Logic 168 (2017) 470–500

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Combining control effects and their models:
Game semantics for a hierarchy of static, dynamic and delimited 

control effects

J. Laird
Department of Computer Science, University of Bath, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 13 October 2016

MSC:
68Q55
68N15
18C20
18C50

Keywords:
Game semantics
Control operators
Computational monads
Exceptions
Continuations
Delimited control

Computational effects which provide access to the flow of control (such as first-class 
continuations, exceptions and delimited continuations) are important features of 
higher-order programming languages. There are fundamental differences between 
them in terms of operational behaviour, expressiveness and implementation, so that 
understanding how they combine and relate to each other is a challenging objective, 
with a key role for semantics in making this precise.
This paper develops operational and denotational semantics for a hierarchy of 
programming languages which include combinations of locally declared control 
prompts to which a program can escape, with first-class continuations which may 
either capture their enclosing prompts, or be delimited by them. We describe two 
different hierarchies of models, both based on categories of games and strategies 
with a computational monad, but obtained using different methodologies. By 
relaxing combinations of behavioural constraints on strategies with control flow 
represented by annotation with control pointers we are able to give direct and 
explicit characterizations of control operators and their effects, including examples 
characterizing their macro-expressiveness. By constructing a parallel hierarchy of 
models by applying sequences of monad transformers, and relating these to the 
direct interpretation of control effects, we obtain games interpretations of higher-
level abstractions such as continuations and exceptions, which can be used as the 
basis for equational reasoning about programs.

© 2016 The Author. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and related work

Control effects are key features of higher-order programming languages. They may be used to mark, reify 
and return to control points in a variety of ways (e.g. with static or dynamic binding, local or global vari-
ables, delimited or undelimited continuations). Combining control effects can highlight and amplify these 
differences, which may have significant impacts, and lead to complicated control flow. Therefore, principles 
for reasoning about combinations of control effects are important in producing safe and expressive pro-

E-mail address: jiml@cs.bath.ac.uk.

http://dx.doi.org/10.1016/j.apal.2016.10.011
0168-0072/© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apal.2016.10.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://creativecommons.org/licenses/by/4.0/
mailto:jiml@cs.bath.ac.uk
http://dx.doi.org/10.1016/j.apal.2016.10.011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2016.10.011&domain=pdf


J. Laird / Annals of Pure and Applied Logic 168 (2017) 470–500 471

grams. Denotational semantics provides a basis for such principles with (broadly speaking) two approaches 
to combining effects. Constructions such as computational monads [19,18] and continuation-passing-style
interpretation [6], and algebraic theories [8] are valuable tools for reasoning about programs, although they 
typically impose additional layers of definition and interpretation through which this must be filtered, 
particularly in the presence of multiple effects or properties such as locality. By contrast, game semantics
provides a setting in which to model combinations of effects more directly by the relaxation of constraints on 
strategies representing functional programs. This approach has been used successfully to give fully abstract
interpretations of many features, including an account of locality for features such as state [2,1]. However, 
the combinatorial nature of games models means that reasoning about denotations — even proving basic 
soundness results — can be difficult in the absence of structuring principles. Thus it can be useful to relate 
the direct (games) and indirect (monads) approaches to effects, to gain the advantages of both representa-
tions. This paper will do so for control effects which include statically bound, first-class continuations and 
locally declared, dynamically bound prompts. Determining the interaction between these features presents 
us with a basic choice: does call-with-current-continuation capture its enclosing prompts, or do they act as 
delimiters for continuations? Allowing either, both or neither of these options leads us to a simple hierarchy 
of programming languages and their semantics.

1.1. A hierarchy of monads for control

Suppose we have a model of the computational λ-calculus (a λC-model) [18] — i.e. a pair (C, T) consisting 
of:

• a category C with finite products and
• a strong monad (T, η, (_)∗, t) on C, and exponentials A ⇒ TB for each pair of objects A, B in C.

Assuming that C also has (distributive) coproducts (and thus an initial object 0 and terminal object 1), we 
may define further λC-models via the following monad transformers [24]:

• The continuations monad transformer, which sends T to the strong monad TC = (_ ⇒ T0) ⇒ T0.
• The maybe transformer, which sends T to the strong monad TP = T(_ + 1).

The latter is often called the exceptions monad — we will also use it to interpret continuation-delimiting 
prompts. Note that (TC)C is equivalent to TC , and (TP )P to the maybe monad T(_ + (1 + 1)). However, 
by alternating the continuations and maybe transformers we may obtain a hierarchy of different λC-models:

...
...

TPCP

C

TCPC

P

TPC

P

TCP

C

TP

C

TC

P

T

CP



Download English Version:

https://daneshyari.com/en/article/5778168

Download Persian Version:

https://daneshyari.com/article/5778168

Daneshyari.com

https://daneshyari.com/en/article/5778168
https://daneshyari.com/article/5778168
https://daneshyari.com

