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The theory of simplicial graph decompositions studies the infinite graphs that are 
built from a sequence of irreducible graphs which are attached together at complete 
subgraphs. In this paper, we study the logical complexity of deciding if a graph 
is prime decomposable. A large part of this analysis involves determining which 
ordinals must appear in these types of decompositions.
A result of Diestel says that every countable simplicial tree decomposition can 
be rearranged to have length at most ω. We show that no such ordinal bound 
can be found for the lengths of non-tree decompositions. More generally, we show 
that for each ordinal σ, there is a decomposable graph whose shortest simplicial 
decomposition has length exactly σ. Adapting this argument, we show that the 
index set of decomposable computable graphs DECOMP is Π1

1 hard by showing that 
WO is 1-reducible to DECOMP.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of graph decompositions studies a certain structure that occurs throughout graph theory. In 
many arguments, such as some proofs for Kuratowski’s Theorem and in some cases of Hadwiger’s conjecture 
(see Chapters 4.4 and 7.3 of [3]), a theorem is proved by showing that a class of graphs is built from a certain 
set of “nice” subgraphs, which are pasted together at complete subgraphs. Because “pasting at complete 
subgraphs” preserves many graph theoretic-properties, it is possible to lift facts about the starting set of 
graphs to the full class of graphs. A sample application is given in Section 1.1.

In the theory of graph decompositions [2], our interest is in the existence, uniqueness, and structure of 
the decompositions themselves.
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In the Note to the reader of [2], Diestel says

“The axiom of choice will be assumed throughout the book, and we shall generally steer well clear of the 
pitfalls of set theory.”

It is natural to ask exactly how much logical strength is being used. In this paper, we will show that all the 
ordinals appear in the study of graph decompositions. Adapting this argument, we show that the index set 
of decomposable computable graphs DECOMP is Π1

1 hard by showing WO is 1-reducible to DECOMP.
In another paper [4] we will examine the reverse mathematics of particular theorems about graph decom-

positions. In particular, we will show that Halin’s theorem, one of the theory’s main existence theorems, is 
equivalent to ACA0. [4] will also discuss additional upper bounds for defining tree-decomposability.

Note that the results in the current paper imply that any reverse mathematical analysis of general 
(non-tree) decompositions will need to pay careful attention to ordinal length. This is in contrast to other 
work on reverse mathematics of graph theory, even concerning theorems which are equivalent to ATR0 or 
Π1

1-CA, such as the versions of König’s duality theorem studied by [1,7].

1.1. A motivating graph-theoretic example

Before formally defining a graph decomposition, it may be helpful to illustrate a practical application of 
decomposing certain graphs.

This illustration requires two standard definitions, neither of which will be used in the remainder of the 
paper. First, an r coloring of a graph G is an assignment of r colors to the vertices of G so that no adjacent 
vertices are given the same color. It is clear that Kr, the complete graph on r vertices, cannot have an r−1
coloring. Second, a graph H ⊆ G is called a minor of G if H can be formed from G by deleting edges and 
vertices and by contracting edges.

Hadwiger’s Conjecture states that for each r > 0, if G doesn’t have a Kr minor, then G has a r − 1
coloring. This conjecture has been proved for r ≤ 6.

Proofs of several cases can be given using the ideas behind graph decompositions. The key lemma for the 
n = 4 case is the following.

Proposition 1 (Part of Proposition 7.3.1. of [3]). Every edge-maximal G without a K4 minor can be con-
structed recursively by pasting triangles at K2s.

That is, the graphs of interest can be built as the union of triangles Bλ, ordered so that each point of 
attachment 

⋃
ρ<λ Bρ ∩Bλ is the subgraph K2.

From this proposition, it is not difficult to prove Hadwiger’s Conjecture for r = 4. First, the factors 
are triangles which are individually 3-colorable. Second, pasting two graphs together at a K2 preserves 
3-colorability. Finally, every graph without a K4 minor lives inside an edge maximal graph without a K4

minor, and removing edges preserves 3-colorability.
The n = 5 case has a similar proof. The key component is the following.

Theorem 2 (Wagner. Theorem 7.3.4 of [3]). Every edge maximal G without a K5 minor can be constructed 
recursively by pasting plane triangulations and copies of a certain 4-colorable graph W together at K2s and 
K3s.

Applying the 4 color theorem, and arguing as above, proves Hadwiger’s conjecture for r = 5. See Chap-
ter 7.3 of [2] for full details. For the remainder of the paper, we turn our attention to the theory of graph 
decompositions.
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