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We introduce a property of Turing degrees: being uniformly non-low2. We prove 
that, in the c.e. Turing degrees, there is an incomplete uniformly non-low2 degree, 
and not every non-low2 degree is uniformly non-low2. We also build some connection 
between (uniform) non-low2-ness and computable Lipschitz reducibility (≤cl), as a 
strengthening of weak truth table reducibility:
(1) If a c.e. Turing degree d is uniformly non-low2, then for any non-computable Δ0

2
real there is a c.e. real in d such that both of them have no common upper bound 
in c.e. reals under cl-reducibility.
(2) A c.e. Turing degree d is non-low2 if and only if for any Δ0

2 real there is a real 
in d which is not cl-reducible to it.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Our paper starts with recalling array computable Turing degrees and computable Lipschitz reducibility. 
Following [5], a degree d is array computable if there is a total function f ≤wtt ∅′ which dominates all total 
functions computable in d. The class of array computable degrees has caused significant recent interest. 
It has deep connections with algorithmic randomness, as witnessed by, for example, Kummer [8], Downey 
and Greenberg [3], Barmpalias, Downey and Greenberg [2], and several other studies (see Downey and 
Hirschfeldt [4]).

Computable Lipschitz reducibility [6,9,4] is a strengthening of weak truth table reducibility, based on 
computations where the use on the oracle at argument n is bounded by n + c for some constant c. We 
adopt this terminology in [9,4] and note it as ≤cl. Schnorr’s theorem proved that A is Martin-Löf random 
if and only if for all n, K(A �� n) = n + O(1), where A �� n denotes the first n bits of A and K denotes 
prefix free Kolmogorov complexity. Schnorr’s theorem suggests a natural method of calibrating randomness 
of reals: A ≤K B iff for all n, K(A �� n) ≤ K(B �� n) + O(1). It is obvious that ≤cl is a measure of relative 
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randomness since a program computing n + c bits of B will compute n bits of A. For a more complete 
account of the role by cl-reducibility in the theory of algorithmic randomness, we refer the reader to the 
monograph by Downey and Hirschfeldt [4].

In [13], Yu and Ding proved that there are two c.e. reals (i.e. limits of computable increasing sequences of 
rationals) which have no common upper bound in the c.e. reals under cl-reducibility. In [1], Barmpalias and 
Lewis showed that there is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real. In the 
c.e. Turing degrees both the Yu-Ding theorem and the Barmpalias–Lewis theorem can characterize array 
computability as follows [2].

Theorem 1.1 (Barmpalias, Downey and Greenberg [2]). The following are equivalent for a c.e. Turing de-
gree d,

(1) There are c.e. reals α, β ∈ d which have no common upper bound in the cl-degrees of c.e. reals.
(2) There is a c.e. real β ∈ d which is not cl-reducible to any random c.e. real.
(3) There is a set A ∈ d which is not cl-reducible to any random c.e. real.
(4) d is array non-computable.

Theorem 1.1 leads us to the theme: the interplay between Turing and cl reducibility. Recall that a 
degree d is non-low2 if for any total function f ≤T ∅′ there is a total function computable in d which 
is not dominated by f . It would be quite interesting to gain a better understanding of non-low2-ness via 
cl-reducibility. In [7], Fan and Yu proved that for any non-computable Δ0

2 real α there is a c.e. real β such 
that α and β have no common upper bound in the c.e. reals under cl-reducibility. Is there such a c.e. real 
β in each non-low2 degree? To answer this question, we introduce a new class of Turing degrees: a uniform 
version of non-low2-ness.

Definition 1.2. A Turing degree d = degT (D) is uniformly non-low2 if for any total function f ≤T ∅′ there 
is a uniform way to define a total function g ≤T D such that g is not dominated by f . In more detail, there 
is a computable function p such that given an index e, if f = Φ∅′

e is total then g = ΦD
p(e) is total and not 

dominated by f .

In this paper, we focus on the c.e. Turing degrees. From now on, each degree mentioned is a c.e. Turing 
degree.

Firstly, we prove that this uniform non-low2-ness is not trivial as follows.

Proposition 1.3. There is an incomplete uniformly non-low2 c.e. degree d.

Secondly, each uniformly non-low2 degree is non-low2, but not conversely.

Proposition 1.4. There is a non-low2 c.e. degree d, which is not uniformly non-low2.

We connect uniform non-low2-ness and computable Lipschitz reducibility as follows.

Theorem 1.5. If a c.e. degree d is uniformly non-low2, then for any non-computable Δ0
2 real α there is a c.e. 

real β ∈ d such that α and β have no common upper bound in c.e. reals under cl-reducibility. Furthermore, 
an index for β can be found uniformly from one of α.

Obviously, in Theorem 1.5 the real β ∈ d is not cl-reducible to α, which assures that α is not cl-complete 
in the c.e. reals. Recall the version of the Yu-Ding Theorem in the Δ0

2 reals is proven in [10]: there are two 
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