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The tree theorem for pairs (TT2
2), first introduced by Chubb, 

Hirst, and McNicholl, asserts that given a finite coloring of 
pairs of comparable nodes in the full binary tree 2<ω , there 
is a set of nodes isomorphic to 2<ω which is homogeneous 
for the coloring. This is a generalization of the more familiar 
Ramsey’s theorem for pairs (RT2

2), which has been studied 
extensively in computability theory and reverse mathematics. 
We answer a longstanding open question about the strength 
of TT2

2, by showing that this principle does not imply 
the arithmetic comprehension axiom (ACA0) over the base 
system, recursive comprehension axiom (RCA0), of second-
order arithmetic. Combined with a recent result of Patey’s 
that TT2

2 is strictly stronger than RT2
2, this establishes TT2

2 as 
the first known example of a natural combinatorial principle to 
occupy the interval strictly between ACA0 and RT2

2. The proof 
of this fact uses an extension of the bushy tree forcing method, 
and develops new techniques for dealing with combinatorial 
statements formulated on trees, rather than on ω.
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1. Introduction

Reverse mathematics is an area of mathematical logic devoted to classifying math-
ematical theorems according to their logical strength. The setting for this endeavor is 
second-order arithmetic which is a formal system strong enough to encompass (count-
able analogues of) most results of classical mathematics. It consists of the usual Peano 
axioms for the natural numbers, together with the comprehension scheme, consisting of 
axioms asserting that the set of all x ∈ N satisfying a given formula ϕ exists. Fragments 
of this system obtained by weakening the comprehension scheme are called subsystems 
of second-order arithmetic. The logical strength of a theorem is then measured according 
to the weakest such subsystem in which that theorem can be proved. This is a two-step 
process: the first consists in actually finding such a subsystem, and the second in showing 
that the theorem “reverses”, i.e., is in fact equivalent to this subsystem, over a fixed weak 
base system. One way to think about such a reversal is that it precisely captures the 
techniques needed to prove the given theorem. By extension, two theorems that turn out 
to be equivalent to the same subsystem (and hence to each other) can thus be regarded 
as requiring the same basic techniques to prove. The observation mentioned above, that 
most theorems can be classified into just a few categories, refers to the fact that most 
theorems are either provable in the weak base system, or are equivalent over it to one of 
four other subsystems.

The base system here is the recursive comprehension axiom (RCA0), which restricts 
the comprehension scheme to Δ0

1-definable sets. This system corresponds roughly to 
constructive mathematics, sufficing to prove the existence of all the computable sets, 
but not of any noncomputable ones. A considerably stronger system is the arithmetical 
comprehension axiom (ACA0), which adds comprehension for sets definable by arith-
metical formulas, i.e., formulas whose quantifiers only range over variables for numbers 
(as opposed to variables for sets of numbers). This system suffices to solve the halt-
ing problem, i.e., the problem of determining whether a given computer program halts 
on a given input, and as such is considerably stronger than RCA0. Three other impor-
tant systems are weak König’s lemma (WKL0), arithmetical transfinite recursion (ATR0), 
and the Π1

1-comprehension axiom (Π1
1-CA0). In order of increasing strength, these are 

arranged thus:

RCA0 < WKL0 < ACA0 < ATR0 < Π1
1-CA0.

We refer the reader to Simpson [33] for a complete treatise on reverse mathematics, and 
to Soare [34] for general background on computability theory.

A striking observation, repeatedly demonstrated in the literature, is that most theo-
rems investigated in this framework are either provable in the base system RCA0, or else 
equivalent over RCA0 to one of the other four subsystems listed above. It is from this 
empirical fact that these systems derive their commonly-used moniker, “the big five”. 
The initial focus of the subject was almost exclusively on a kind of zoological classifica-
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