ARAB JOURNAL OF MATHEMATICAL SCIENCES

Arab J Math Sci 23 (2017) 133-140

On subspace-diskcyclicity

NAREEN BAMERNI^{a,b,*}, ADEM KILIÇMAN^a

^a Department of Mathematics, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia ^b Department of Mathematics, University of Duhok, Kurdistan Region, Iraq

Received 5 October 2015; received in revised form 1 June 2016; accepted 2 June 2016 Available online 14 June 2016

Abstract. In this paper, we define and study subspace-diskcyclic operators. We show that subspace-diskcyclicity does not imply diskcyclicity. We establish a subspace-diskcyclic criterion and use it to find a subspace-diskcyclic operator that is not subspace-hypercyclic for any subspaces. Also, we show that the inverses of invertible subspace-diskcyclic operators do not need to be subspace-diskcyclic for any subspaces. Finally, we prove that every finite-dimensional Banach space over the complex field supports a subspace-diskcyclic operator.

2010 Mathematics Subject Classification: primary 47A16; secondary 47A99

Keywords: Diskcyclic operators; Dynamics of linear operators in Banach spaces

1. INTRODUCTION

A bounded linear operator T on a separable Banach space \mathcal{X} is hypercyclic if there is a vector $x \in \mathcal{X}$ such that its orbit $Orb(T, x) = \{T^n x : n \ge 0\}$ is dense in \mathcal{X} ; such a vector x is called hypercyclic for T. The first example of a hypercyclic operator on a Banach space was constructed by Rolewicz in 1969 [11]. He showed that if B is the backward shift on $\ell^p(\mathbb{N})$ then λB is hypercyclic if and only if $|\lambda| > 1$.

The study of the scaled orbit and disk orbit is motivated by the Rolewicz example [11]. In 1974, Hilden and Wallen [7] defined the notion of supercyclicity. An operator T is called supercyclic if there is a vector x such that its scaled orbit $\mathbb{C}Orb(T, x)$ is dense in \mathcal{X} . The notion of a diskcyclic operator was introduced by Zeana [13]. An operator T is called diskcyclic if there is a vector $x \in \mathcal{X}$ such that its disk orbit $\mathbb{D}Orb(T, x)$ is dense in \mathcal{X} ;

E-mail addresses: nareen_bamerni@yahoo.com (N. Bamerni), akilicman@yahoo.com (A. Kılıçman). Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2016.06.001

^{*} Corresponding author at: Department of Mathematics, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

^{1319-5166 © 2016} The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

such a vector x is called diskcyclic for T. For more information about these operators, the reader may refer to [2,4,5].

In 2011, Madore and Martínez-Avendaño [9] considered the density of the orbit in a non-trivial subspace instead of the whole space, this phenomenon is called the subspace-hypercyclicity. An operator is called \mathcal{M} -hypercyclic or subspace-hypercyclic for a subspace \mathcal{M} of \mathcal{X} if there exists a vector such that the intersection of its orbit and \mathcal{M} is dense in \mathcal{M} . They proved that subspace-hypercyclicity is an infinite dimensional phenomenon. Also, they asked whether the inverse of an invertible subspace-hypercyclic operator is again subspace-hypercyclic. This problem is still open. For more information on subspace-hypercyclicity, one may refer to [1,8,10].

In 2012, Xian-Feng et al. [12] defined the subspace-supercyclic operator as follows: An operator is called \mathcal{M} -supercyclic or subspace-supercyclic for a subspace \mathcal{M} of \mathcal{X} if there exists a vector such that the intersection of its scaled orbit and \mathcal{M} is dense in \mathcal{M} .

Since both subspace-hypercyclicity and subspace-supercyclicity were studied, it is natural to define and study subspace-diskcyclicity. In the second section of this paper, we introduce the concept of subspace-diskcyclicity and subspace-disk transitivity. We show that not every subspace-diskcyclic operator is diskcyclic. We give the relation between different kinds of subspace-cyclicity. In particular, we give a set of sufficient conditions for an operator to be subspace-diskcyclic. We use these conditions to give an example of a subspace-diskcyclic operator which is not subspace-hypercyclic. Also, we give a simple example of a subspace-supercyclic operator that is not subspace-diskcyclic operators do not need to be subspace-diskcyclic which answers the corresponding question in [12, Question 1] for subspace-diskcyclicity. As a consequence, we show that every finite dimensional Banach space supports subspace-diskcyclic operators, which is not true for subspace-hypercyclicity.

2. MAIN RESULTS

In this paper, all Banach spaces \mathcal{X} are infinite dimensional (unless stated otherwise) and separable over the field \mathbb{C} of complex numbers. All subspaces of \mathcal{X} are assumed to be nontrivial linear subspaces and topologically closed, and all relatively open sets are assumed to be non-empty. We will denote the closed unit disk by \mathbb{D} , the open unit disk by \mathbb{U} and the set of all bounded linear operators on \mathcal{X} by $\mathcal{B}(\mathcal{X})$.

Definition 2.1. Let $T \in \mathcal{B}(\mathcal{X})$, and let \mathcal{M} be a subspace of \mathcal{X} . Then T is called a subspacediskcyclic operator for \mathcal{M} (or \mathcal{M} -diskcyclic, for short) if there exists a vector x such that $\mathbb{D}Orb(T, x) \cap \mathcal{M}$ is dense in \mathcal{M} ; such a vector x is called a subspace-diskcyclic (or \mathcal{M} -diskcyclic, for short) vector for T.

Let $\mathbb{D}C(T, \mathcal{M})$ be the set of all \mathcal{M} -diskcyclic vectors for T, that is

$$\mathbb{D}C(T,\mathcal{M}) = \{x \in \mathcal{X} : \mathbb{D}Orb(T,x) \cap \mathcal{M} \text{ is dense in } \mathcal{M}\}\$$

Let $\mathbb{D}C(\mathcal{M}, \mathcal{X})$ be the set of all \mathcal{M} -diskcyclic operators on \mathcal{X} , that is

 $\mathbb{D}C(\mathcal{M},\mathcal{X}) = \{T \in \mathcal{B}(\mathcal{X}) : \mathbb{D}Orb(T,x) \cap \mathcal{M} \text{ is dense in } \mathcal{M} \text{ for some } x \in \mathcal{X}\}.$

The next example shows that subspace-diskcyclicity does not imply diskcyclicity.

Download English Version:

https://daneshyari.com/en/article/5778737

Download Persian Version:

https://daneshyari.com/article/5778737

Daneshyari.com