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Abstract

In the paper, the authors present explicit formulas, nonlinear ordinary differential equations, and
recurrence relations for Eulerian polynomials, higher order Eulerian polynomials, and their generating
functions in terms of the Stirling numbers of the second kind.
c⃝ 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction 1

In [6], Kims stated that Eulerian polynomials An(t) for n ≥ 0 can be generated by 2

1 − t
ex(t−1) − t

=

∞∑
n=0

An(t)
xn

n!
, t ̸= 1 3
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and that higher order Eulerian polynomials A(α)
n (t) for integers n ≥ 0 and real numbers α > 01

can be generated by2 [
1 − t

ex(t−1) − t

]α

=

∞∑
n=0

A(α)
n (t)

xn

n!
, t ̸= 1.3

This generation of An(t) is same as the one in [1, p. 2], but different from the one4

1 − u
et(u−1) − u

= 1 +

∞∑
n=1

An(u)
u

tn

n!
5

in [3, p. 244, Eq. [5j]].6

In [6, Theorem 1], Kims established inductively and recurrently that the generating function7

F(t, x) =
1

ex(t−1) − t
, t ̸= 18

satisfies the nonlinear ordinary differential equation9

∂ N F(t, x)
∂x N

= (1 − t)N
N+1∑
i=1

ai−1(N , t)F i (t, x), N ∈ {0} ∪ N, (1.1)10

where11

a0(N , t) = a0(N − 1, t) = · · · = a0(1, t) = a0(0, t) = 1 (1.2)12

and13

ai (N , t) = i t
N−i∑
j=0

(i + 1) j ai−1(N − j − 1, t), 1 ≤ j ≤ N . (1.3)14

In [6, Theorems 2 and 3], Kims presented that15

An+N (t) = (1 − t)N+1
N+1∑
i=1

ai−1(N , t)
A(i)

n (t)
(1 − t)i

16

and17

∞∑
j=0

t j ( j + 1)n+N
=

1
(1 − t)n

N+1∑
i=1

ai−1(N , t)
A(i)

n (t)
(1 − t)i

18

for n, N ∈ {0} ∪ N. From (1.2) and (1.3), Kims derived inductively that19

ai (N , t) = i !t i
N−i∑

ji−1=0

N− ji−1−i∑
ji−2=0

· · ·

N− ji−1−···− j2−i∑
j1=0

(i + 1) ji−1

×i ji−2 · · · 3 j1
(
2N− ji−1− ji−2−···− j1−i+1

− 1
) (1.4)20

for 1 ≤ i ≤ N .21

It is clear that the above formulas (1.3) and (1.4) for ai (N , t) cannot be computed easily either22

by hand or by computer software. Can one find a simple expression for the quantities ai (N , t)?23

It is common knowledge that the Stirling numbers of the second kind S(n, k) for n ≥ k ≥ 024

are important in combinatorial analysis, theory of special functions, number theory, and the like.25
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