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a b s t r a c t

Previous studies have suggested some approximations for the basic equations of terrestrial mantle con-
vection. The approximations are based on five dimensionless parameters—M (Much number), Pr (Prandtl
number), Di (dissipation number), Co (Compressibility number; the ratio of dissipation number to the
Grüneisen number), and t (fraction of density change due to thermal expansion). These approximations
are given by: (i) M2Pr? 0 for the anelastic liquid approximation (ALA), (ii) M2Pr? 0 and t? 0 for the
truncated anelastic liquid approximation (TALA), (iii) M2Pr? 0, t? 0, and Co ? 0 for the extended
Boussinesq approximation (EBA), (iv) M2Pr? 0, t? 0, and Di/Ra? 0 for the superadiabatic Boussinesq
approximation (SBA), and (v) M2Pr? 0, t? 0, Co? 0, and Di? 0 for the Boussinesq approximation
(BA). This study suggests the use of five dimensionless parameters, namely, M, Pr, Di, Co, and Ra
(Rayleigh number), to reduce the number of approximations to four: (I) M2Pr? 0 for the ALA, (II)
M2Pr? 0 and Co? 0 for the EBA, (III) M2Pr? 0 and Di/Ra? 0 for the SBA, and (IV) M2Pr? 0, Co? 0,
and Di? 0 for the BA. This is because t is simply defined by t =M2PrRa/Co and is automatically approx-
imated to 0 whenM2Pr? 0. In other words, approximations of ALA and TALA can be unified because they
represent the same sense physically. This conclusion is valid for mantle convection in the present Earth
whose Ra � O(107) is approximately one order smaller than the threshold Rayleigh number, Rathr = Co/
(M2Pr) � O(108).

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical and numerical (computational) studies on the man-
tle dynamics use appropriate approximations and simplifications
of the basic equations that govern mantle convection depending
on the research problem under consideration. Schubert et al.
(2001) provided a detailed derivation of the basic equations gov-
erning mantle convection, i.e., the conservation equations of mass,
momentum, and energy based on several previous studies (Ita and
King, 1994; Jarvis and McKenzie, 1980; McKenzie et al., 1974;
Schmeling, 1989; Schmeling and Jacoby, 1981; Tackley, 1996;
Zhang and Yuen, 1996). Five approximation methods have been
suggested to simplify these basic equations (Table 1): anelastic liq-
uid approximation (ALA) (McKenzie et al., 1974; Zhang and Yuen,
1996), truncated anelastic liquid approximation (TALA) (Ita and
King, 1994; Jarvis and McKenzie, 1980; Steinbach et al., 1989),
extended Boussinesq approximation (EBA) (Christensen and
Yuen, 1985), and Oberbeck–Boussinesq approximation (hereafter,
simply called the ‘‘Boussinesq approximation”; BA) (Boussinesq,
1903; Oberbeck, 1879). As an intermediate approximation

between the EBA and BA, Trubitsyn and Trubitsyn (2015) intro-
duced the superadiabatic Boussinesq approximation (SBA) in
which the adiabatic heating term in the conservation equation of
energy is retained, whereas the viscous dissipation term is ignored
under the EBA.

The purpose of this brief paper is to show that the number of
approximation methods for mantle convection can be reduced to
four by considering the rearrangement of the dimensionless
parameters. The forms of equations and symbols for physical quan-
tities and parameters shown in this paper are based on published
work by Schubert et al. (2001) and others (Christensen and Yuen,
1985; Ita and King, 1994; Jarvis and McKenzie, 1980; McKenzie
et al., 1974; Schmeling, 1989; Schmeling and Jacoby, 1981;
Zhang and Yuen, 1996).

2. Dimensionless parameters and the reference states

2.1. Non-dimensionalization

In the derivation of the basic equations governing terrestrial
mantle convection, the length L, the differential operator $, ther-
mal diffusion time t, velocity v, pressure p (or P), stress r, temper-
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ature T, and gravitational potentialwwere non-dimensionalized as
follows (e.g., Schubert et al., 2001):

L0 ¼ 1
rtop

L; r0 ¼ rtopr; t0 ¼ j0
r2top

t; m0 ¼ rtop
j0
m;

p0 ¼ r2top
g0j0

p; r0 ¼ r2top
g0j0

r; T 0 ¼ 1
DT ðT þ TtopÞ;

W0 ¼ r3topq0g0
g0j0

W;

ð1Þ

where rtop denotes the radius of the planet, Ttop is the absolute tem-
perature at the planet’s surface, and DT is the temperature differ-
ence between the top and bottom surfaces of the mantle. Other
quantities such as the density q, coefficient of thermal expansion
a, gravitational acceleration g (positive for upward direction), ther-
mal diffusivity j, viscosity g, specific heat at a constant pressure or
volume (cp and cv), and isothermal or adiabatic bulk modulus (KT

and Ka) were dimensionalized by their reference values, e.g.,
q0 = q/q0. The subscript 0 indicates reference values (Table 2), and
the variables with primes represent the dimensionless quantities.

In this study, the physical quantities were normalized by the
radius of the planet, rtop, along the spherical polar coordinates (r,
h, /). The basic equations were non-dimensionalized by rtop follow-
ing the dimensionless factors of Eq. (1), while the dimensionless
parameters were scaled by the thickness of the terrestrial mantle,
b, to ensure consistency between the models in Cartesian geometry
and those in spherical-shell geometry. The ratio of the thickness of
the terrestrial mantle to the radius of the planet n is defined as

n � b
rtop

; ð2Þ

while the relationship between the dimensionless parameter b
scaled by b and that scaled by rtop is given by

bðrntopÞ ¼ bðbnÞ � n�n; ð3Þ
where n is the power-law integer. If the dimensionless radii of the
top surface boundary of the planet and the center of planet are fixed
at 1 and 0 respectively, then 0 < n � 1

2.2. Reference states and the deviations

Using the dimensionless factors of Eq. (1), the dimensionless
forms of the thermodynamically stabilized reference states of pres-
sure (i.e., hydrostatic/lithostatic pressure) �P0, temperature (i.e., adi-
abatic temperature) �T 0

a, and density (i.e., stratified adiabatic
density in gravity) �q0

a are expressed by

d�P0
dr0 ¼ � Co

M2Pr
n�3�q0

a�g
0;

d�T 0a
dr0 ¼ �Din�1 �a0�g0

�c0p
�T 0
a;

d�q0
a

dr0 ¼ �Con�1�q0
a;

ð4Þ

and by integrating, the followings equation are obtained,

�P0 ¼ �P0
s þ Co

M2Pr
n�3�q0

a
�g0ðr0top � r0Þ;

�T 0
a ¼ �T 0

as exp Din�1 �a�g
�cp
ðr0top � r0Þ

h i
;

�q0
a ¼ �q0

as exp Con�1ðr0top � r0Þ
h i

;

ð5Þ

where �a is the reference coefficient of thermal expansion, �cp is the
reference specific heat at a constant pressure, and the subscript s
indicates the reference value at the planet’s surface. The dimension-
less parameters M, Pr, Gr, Di, and Co are the Mach number (the ratio
of thermal diffusive velocity to the sound velocity), the Prandtl
number (the ratio of momentum diffusion to the thermal diffusion),
the Grüneisen number, the dissipation number, and the compress-
ibility number, respectively. They are given by

M � j0=b
ðKT0=q0Þ1=2

¼ q0j2
0

b2KT0

� �1
2
; Pr � g0

q0j0
; Gr � a0KT0

q0cv0
¼ a0Ka0

q0cp0
; Di � a0g0b

cp0
;

Co � Di
Gr ¼ g0bq0cv0

KT0cp0
¼ g0bq0cp0

Ka0cp0
:

ð6Þ
Here, Di and Gr are related to the compressibility of the terres-

trial mantle (Birch, 1952). Note that Eq. (5) is valid if Gr and Co are
assumed to be constant and do not depend on the density. The
depth-dependence of Gr can be referred in Steinbach et al. (1989)
and Balachandar et al. (1992). Moreover, �g0 is assumed constant
and does not depend on the radius. To determine the radial change
of �g0 in a real spherical-shell geometry, refer Schubert et al. (2001).

The dynamic pressure (or nonhydrostatic pressure) p and the
potential temperature T deviate from their reference state owing
to convective motion. They are expressed as

p0 ¼ P0 � �P0;

T 0 ¼ T 0
a � �T 0

a:
ð7Þ

Using the dimensionless factors in Eq. (1), the deviation of den-
sity from the reference state owing to convective motion is
expressed as follows (e.g., Schubert et al., 2001)

q0 ¼ �q 1þ 1
�K 0
T

p0M2Prn2 � �a0T 0t

 !
; ð8Þ

where t is the fraction of density change due to thermal expansion

t � a0DT; ð9Þ
and from Eq. (6),

M2Pr ¼ g0j0

KT0b
2 : ð10Þ

In the following section, the basic equations of terrestrial man-
tle convection have been reconsidered under the approximation
methods suggested in the published literature. For simplicity, the
primes representing dimensionless quantities have been omitted
hereafter.

3. Approximations for the basic equations of mantle convection

3.1. Anelastic liquid approximation (ALA)

In the convection of a compressible fluid with a low Prandtl
number, the Mach number is approximated to zero (M? 0) under
the assumption that the short-wavelength phenomena by

Table 1
Approximations for the basic equations of mantle convection in previous literature
and this paper.

Step# Name of approximations Approximations

Previous literature (5 steps)
i Anelastic liquid approximation (ALA) M2Pr? 0
ii Truncated anelastic liquid

approximation (TALA)
M2Pr? 0, t? 0

iii Extended Boussinesq approximation
(EBA)

M2Pr? 0, t? 0, Co? 0

iv Superadiabatic Boussinesq
approximation (SBA)

M2Pr? 0, t? 0,Di/Ra? 0

v Boussinesq approximation (BA) M2Pr? 0, t? 0, Co? 0,
Di? 0

This paper (4 steps)
I Anelastic liquid approximation (ALA) M2Pr � t? 0
II Extended Boussinesq approximation

(EBA)
M2Pr � t? 0, Co? 0

III Superadiabatic Boussinesq
approximation (SBA)

M2Pr � t? 0, Di/Ra? 0

IV Boussinesq approximation (BA) M2Pr � t? 0, Co? 0,
Di? 0
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