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A three-dimensional (3D) slope stability analysis method is presented in this paper based on three-dimensional
independent cover based manifold method (ICMM3D) and vector sum method (VSM). ICMM3D is proposed in
the framework of independent cover,which avoid the time-consuming and error-prone cover system generation
of convention numerical manifoldmethod (NMM). It is very suitable for the continuous/discontinuous deforma-
tion analysis in slope engineering. Then, with the stress field obtained by ICMM3D, VSM is employed to calculate
the factor of safety,which is effective in computation and clear in physicalmeaning. In addition, a new strategy of
discretization of the slip surface is proposed, which discretizes the slip surface into a set of calculating points in
order to avoid errors caused by the special handling in the boundary columns in limit equilibrium method
(LEM) and the tedious triangulation of the slip surface in VSM. Finally, genetic algorithm is employed to search
for the critical slip surface. Numerical examples demonstrate the efficiency, accuracy and robustness of the
proposed method.
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1. Introduction

In the stability analysis of landslides, the rock masses are usually
heterogeneous and contain large quantities of discontinuities, e.g., faults
and joints. Besides recent advantages in remeshing procedure, see e.g.
the seminal work of Areias et al. (2016a, 2013b, 2016b, 2015),
Ghorashi et al. (2015), Jia et al. (2013), Nanthakumar et al. (2013),
and Thai et al. (2014), the finite element method requires that the dis-
continuities are aligned to the discretization. A more elegant solution
has been proposed in the context of so-called partition of unity enriched
methods such as the extended finite element method (XFEM)
(Belytschko and Black, 1999; Belytschko et al., 2001), generalized finite
element method (GFEM) (Strouboulis et al., 2000) or specific improve-
ments such as the smoothed extended finite element method
(Nguyen-Xuan et al., 2008; Thai et al., 2012), isogeometric extended
finite element methods (Ghasemi et al., 2015; Hughes et al., 2005;
Nguyen-Thanh et al., 2014, 2015; Nguyen et al., 2016, 2015; Thai et al.,
2015, 2016) or phantom node method (Chen et al., 2012; Song et al.,
2006). In XFEM, the discontinuity can evolve arbitrarily in the
discretization during crack propagation. However, modeling contact in
the XFEM framework which is important for the analysis of landslides,
remains a challenge. Meshfree methods (Belytschko et al., 1996; Li
and Liu, 2002) offer an alternative to finite element methods. They are

also based on continuummechanics and can handle large deformations
and contact (at least when Eulerian kernels are used) easier than finite
element methods (Dilts, 1999; Libersky and Petschek, 1991; Rabczuk
and Areias, 2006; Rabczuk et al., 2007a; Randles and Libersky, 1996;
Ren et al., 2016; Vu-Bac et al., 2013; Zhuang et al., 2012b, 2014b)
which is important in the simulation of landslides. Moreover, they are
also well suited for modeling discrete fracture (Nguyen-Thanh et al.,
2011; Nguyen et al., 2008; Rabczuk and Belytschko, 2007; Rabczuk et
al., 2004, 2007b, 2010a, 2010b, 2010c; Zhuang et al., 2012a, 2014a,
2011). An alternative to methods which solve continuum mechanics
equations are methods which account for the ‘fine-scale’ structure
such as the discrete element method (DEM) (Cundall and Strack,
1979) or discontinuous deformation analysis (DDA) (Shi, 1988). They
are capable of accounting for the faults and joints of the rock. However,
capturing the macroscopic material behavior with those methods
remains a major challenge. Therefore, coupling methods have been
proposed that combine the strength of discrete methods and the finite
element method (Munjiza et al., 1995); see also the contributions on
multiscale methods for fracture (Amiri et al., 2014; Areias et al.,
2013a; Budarapu et al., 2014; Quayum et al., 2015; Talebi et al., 2015;
Vu-Bac et al., 2015).

A very powerful method for the solution of continuum-
discontinuum problems is the numerical manifold method (NMM);
see Ma et al. (2010) for a recent survey. The NMM was proposed by
Shi (1991) and has been widely developed and extended to various
two-dimensional problems, e.g. cover system generation (Cai and Wu,

Engineering Geology 225 (2017) 83–95

⁎ Corresponding author.
E-mail address: xiaoyingzhuang@tongji.edu.cn (X. Zhuang).

http://dx.doi.org/10.1016/j.enggeo.2017.02.022
0013-7952/© 2017 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Engineering Geology

j ourna l homepage: www.e lsev ie r .com/ locate /enggeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enggeo.2017.02.022&domain=pdf
http://dx.doi.org/10.1016/j.enggeo.2017.02.022
mailto:xiaoyingzhuang@tongji.edu.cn
http://dx.doi.org/10.1016/j.enggeo.2017.02.022
http://www.sciencedirect.com/science/journal/00137952
www.elsevier.com/locate/enggeo


2016; Chen and Li, 2015), fracture (Ma et al., 2009; Zheng and Xu,
2014), slope engineering (Koyama et al., 2012; Ning et al., 2011;
Zheng et al., 2014), to name a few. The NMM has also been implement-
ed in 3D (Cheng and Zhang, 2007, 2008; He and Ma, 2010; Jiang et al.,
2010, 2009; Terada and Kurumatani, 2005) and applied to joint rock
slope stability analysis (He et al., 2013). However, the efficient 3D
implementation remains a challenge since it requires advanced and ef-
ficient contact algorithms. One of themost important issues is the cover
system generation. For two-dimensional problems, Chen and Li (2015)
considered the mathematical mesh as the union of mathematical ele-
ments (MEs) rather than mathematical covers (MCs) which made the
cover system generation more efficient. Cai and Wu (2016) employed
a pre-defined symbol function bywhich large amounts of computation-
al geometries were replaced by computational algebras facilitating the
generation process of the cover system. There are comparatively few
papers in three dimensions on the generation of the cover system.
Li and Zhang (2014) proposed a 3D manifold cutting method based on
the 3D block cutting approach (Jing, 2000) which is able to generate
arbitrary 3D MEs based on tetrahedral and hexahedral mesh covers.

In order to solve the problems above, Cai and Liu (2015), Cai et al.
(2013) proposed an independent cover based manifold method
(ICMM). In the ICMM, various high-order cover functions are employed
at the independent covers, and the corresponding elements are defined
between the adjacent independent covers, which are different from the
virtual springs in DDA and DEM. Complex algorithms for the cover sys-
tem generation used in conventional NMM as well as the rank deficien-
cy due to the linear dependence of the global degrees of freedom
present in high-order NMM are completely avoided in ICMM. The con-
tinuous and discontinuous deformation analysis can be unified in one
framework in the ICMM. Furthermore, the ICCM can be easily extended
to three dimensions which is the key contribution of this manuscript. It
will be extended to slope stability analysis for validation.

The determination of the stability of slopes consists of two parts
(Baker, 1980): calculate the factor of safety of a potential slip surface
and search for the critical slip surface over all admissible slip surfaces.
The definition of safety of factor is not unique. Zheng et al. (2006) sug-
gested there are mainly two kinds of definitions in the abstract. One is
the strength reserving definition, where the factor of safety is defined
as “the factor by which the shear strength of the soil would have to be
divided to bring the slope into a state of barely stability equilibrium”
(Duncan, 1996), e.g. the limit equilibrium method (LEM) (Fellenius,
1939) and the strength reduction method (SRM) (Zeinkiewicz et al.,
1975). By now, this definition is believed to be most familiar to engi-
neers (Zheng et al., 2006). However, Ge (2010) pointed out that there
are two problems for both the LEM and SRM. One is that the rationality
of the strength reduction principle seems to be doubtful. For example,
the cohesive force c and internal friction coefficient tanϕ of material di-
vided by same F simultaneously is not very reasonable. If c and tanϕ are
divided by different factors respectively, it will be complicated and infi-
nite combining solutions could be obtained. The other is that because
force is a vector, the algebraic sum of force is hold only for some special
cases while the superposition principle of vectors should be hold in the
analysis. The other definition of factor of safety is overloading definition.
It defines the factor of safety as the scalar ratio of total resisting forces to
total driving forces. The physical meaning is clear for a straight line or a
circular slip line. However, it is questioned for a non-straight line or a
non-circular slip line either, because it is neither the summation of
force vectors in space nor the summation of projections of force vectors
in a fixed direction. In order to overcome the problems above, Ge (2010)
proposed the vector sum method (VSM), which estimates the stability
of a slope by comparing the projection of the total resisting force with
the total sliding force. The factor of safety is computed based on the
real stress state and the vector sum algorithm, so the stress field needs
to be calculated only once and the physical meaning is sound and
clear. In this paper, the factor of safety is calculated using VSM based
on the stress fields obtained by ICMM3D.

The second step in slope stability analysis is finding the critical sur-
face over all admissible slip surfaces. The aim is to find the best solution
among available candidates by minimizing or maximizing an objective
function. Optimization techniques are usually employed to determine
the critical slip surface, e.g. pattern search methods (Bishop and
Morgenstern, 1960; Greco and Gulla, 1985; Prater, 1979), calculus of
variations (Baker and Garber, 1978; De Josselin De Jong, 1980; Friedli
and Giger, 1978), dynamic programming methods (Baker, 1980;
Yamagami et al., 1991), random search methods (Greco, 1996;
Malkawi et al., 2001a, 2001b;Mowen, 2004; Yang et al., 2016), heuristic
optimization methods (Bolton et al., 2003; Cheng, 2003; Cheng et al.,
2008, 2005; Gao, 2015; Kahatadeniya et al., 2009; Kalatehjari et al.,
2015), etc. In recent years, genetic algorithmhas beenwidely used to lo-
cate the critical slip surface because of its elegance and efficiency. It has
been found that genetic algorithm is a robust search technique which
often gives global solution (Ahangar-Asr et al., 2012; Li et al., 2010;
Manouchehrian et al., 2014; Sengupta and Upadhyay, 2009). In this
paper, a search technique based on genetic algorithm and ellipsoidal
shape is proposed to search for the critical slip surface. In addition, the
potential slip surface during the process is discretized into a set of calcu-
lating points in order to avoid errors caused by the special handling in
the boundary columns in limit equilibrium method (LEM) and the
tedious triangulation of the slip surface in VSM.

In this paper, ICMM3D is firstly proposed to calculate the stress field,
then VSM is employed to obtain the factor of safety. After that the critical
slip surface is determined based on genetic algorithm among the poten-
tial ellipsoidal shape slip surfaces. Finally, five examples are investigated
to demonstrate the accuracy of ICMM3Dand the presented slope stability
analysis method.

2. The basic theory of ICMM3D

2.1. Stiffness matrix of the independent cover

Fig. 1 illustrates an analysis domainwith a joint. The associated finite
element mesh based on hexahedra is shown in Fig. 2.

The NMM provides a unified framework for both continuous and
discontinuous problems (Chen and Li, 2015). In the conventional
NMM, amathematical mesh, which is the union of mathematical covers
(MCs), is first assigned to model the problem. MCs have three proper-
ties: (1) MCs are arbitrarily defined by users; (2) they are independent
of physical features, but their union must completely cover all physical
features; and (3) they may overlap. The finite element mesh is used to
define themathematicalmesh for the numericalmanifoldmethod. Con-
sidering any node, all elements having this node form a MC. In Fig. 2,
there are 20 nodes and each node has a MC, e.g. MC of node 9 is the
region 5-6-8-7-13-14-16-15 as shown in Fig. 3.

Fig. 1. An analysis domain with a joint.

Fig. 2. Hexahedron element mesh.
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