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Experimental study of Forrelation in nuclear spins
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a b s t r a c t

Correlation functions are often employed to quantify the relationships among interdependent variables
or sets of data. Recently, a new class of correlation functions, called FORRELATION, has been introduced by
Aaronson and Ambainis for studying the query complexity of quantum devices. It was found that there
exists a quantum query algorithm solving 2-fold FORRELATION problems with an exponential quantum
speedup over all possible classical means, which represents essentially the largest possible separation
between quantum and classical query complexities. Here we report an experimental study probing the
2-fold and 3-fold FORRELATIONS encoded in nuclear spins. The major experimental challenge is to control
the spin fluctuation to within a threshold value, which is achieved by developing a set of optimized
GRAPE pulse sequences. Overall, our small-scale implementation indicates that the quantum query algo-
rithm is capable of determining the values of FORRELATIONS within an acceptable accuracy required for
demonstrating quantum supremacy, given the current technology and in the presence of experimental
noise.

� 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

With the ability of creating exponential number of superposi-
tion of states, quantum computation provides an unprecedented
computational power over classical computation. For example,
Shor’s factoring algorithm [1], the Harrow-Hassidim-Lloyd (HHL)
algorithm [2], and other progresses in quantum simulation [3–5]
provide strong evidences that quantum computation can gain
exponential speed-up in practical problems. Apart from computa-
tional decision problems, quantum devices can be exploited for
other classically-intractable computational tasks, including sam-
pling distributions of some quantum systems [6–10]. As a result,
one may expect to gain ‘‘quantum supremacy” [11] in relatively-
simple quantum devices in the near future.

Although these results are promising, complete and rigorous
proofs supporting claims of gaining quantum supremacy are still
unavailable. Recalling that for the case of Shor’s algorithm, we have
not excluded the possibility of the existence of a polynomial-time
classical algorithm for the factoring problem. For the HHL algo-
rithm, which is BQP-complete, it remains to be determined if

quantum computation is indeed more powerful than classical com-
putation, or technically, if it is true that BQP � BPP. Here BPP

(bounded-error probabilistic polynomial time) is the class of deci-
sion problems solvable by a probabilistic Turing machine in poly-
nomial time with an error probability of at most 1=3 for all
instances and BQP (bounded-error quantum polynomial time) is
the quantum analogue of the complexity of BPP in computational
complexity theory. Furthermore, the success of the sampling algo-
rithms is founded on several conjectures in the theory of classical
computational complexity. Even though boson-sampling devices
are capable of creating an exponentially large superposition of
quantum states, the transition amplitudes can still be estimated
by classical devices within additive errors [12].

On the other hand, query complexity, which counts the number
of queries of black-box functions (i.e., without knowledge of the
internal structure), provides further evidence supporting quantum
speed-up over the classical counterparts. For example, Grover’s
search algorithm [13], the Deutsch-Jozsa algorithm [14] and
Simon’s algorithm [15] are all characterized in the context of query
complexity.

Recently, Aaronson and Ambainis [16] introduced a new con-
cept in query complexity, called FORRELATION, which characterizes
the multi-fold correlations among different boolean functions. It
was found that a quantum computer is capable of solving 2-fold
FORRELATION problems within a constant Oð1Þ number of queries.
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However, classical computers require an exponential number of
queries. The difference of the query complexity between quantum
and classical methods is shown to be a maximally-achievable sep-
aration with quantum methods (see also Refs. [17–19]). Further-
more, multiple-fold FORRELATION problems are as hard as quantum
computation [16], i.e., BQP-complete.

Here we report the first experimental study of the 2-fold and
3-fold FORRELATIONS in a system of nuclear spins, where the NMR
quantum circuit for 2-fold FORRELATION involves only 2 queries of
the black box functions, but classically, it takes a total of 8 queries
for an exact result. Similarly, 3 queries are needed for the NMR
implementation of 3-fold FORRELATION, while 12 queries are needed
classically if memory is given for the black-box functions;
otherwise it can go up to 192 classical queries.

However, we note that the measurement results come directly
from the NMR signals, but a standard implementation of the
quantum circuit involves probabilistic measurement outcomes.
Furthermore, similar to other experimental demonstrations of
Deutsch-Jozsa algorithms [20,21], the applied NMR pulse sequence
depends on the knowledge of the functions, which are not strictly
‘‘black boxes”. Therefore, the current experimental results cannot
be taken as a direct proof for demonstrating quantum supremacy,
which is relevant only in the large-N limit.

The purpose of the experiment is to investigate whether a
small-size prototype experiment can produce FORRELATION within
the accuracy required for demonstrating the quantum advantages
(above the threshold 3=5 or below the threshold 1=100), given the
current technology and in the presence of experimental noise. In
particular, our experimental fluctuation for the spin measurement
has to be controlled within 1%. These experimental results allow
us to identify the places one can improve for scaling up the size
of the experiment in future.

2. Forrelation

Given k Boolean functions, f 1 � f 1ðx1Þ; � � � ; f k � f kðxkÞ, each with
n variables, i.e., xj 2 0;1f gn ! �1;1f g, the k-fold FORRELATION,
Uk � Uf 1 ;f 2 ;...;f k , of these functions is defined as follows,

Uk �
X

x1 ;x2 ;...

ei/ðx1 ;x2 ;...Þ

2ðkþ1Þn=2 f 1ðx1Þf 2ðx2Þ � � � f kðxkÞ; ð1Þ

where ei/ðx1 ;x2 ;...Þ � ð�1Þx1 �x2 ð�1Þx2 �x3 � � � ð�1Þxk�1 �xk , and x � y indicates
the bitwise inner product between the n-dimensional binary vec-
tors x and y. The total number of possible assignment is N ¼ 2n.
Essentially, 2-fold FORRELATION is simply the inner product between
a boolean function and the Fourier transform of another boolean
function, i.e.,

Uf ;g � 1

23n=2

X
x;y2f0;1gn

ð�1Þx�yf ðxÞgðyÞ: ð2Þ

Importantly, an exact determination of 2-fold FORRELATION Uf ;g is
a computationally-hard problem for classical devices, which can be
justified by the following challenge [16]: given a pair of Boolean
functions f and g, suppose it is known that either (1)
jUf ;g j � 1=100 or (2) Uf ;g P 3=5 is true, all classical methods

require an exponential number Xð
ffiffiffiffi
N

p
= logNÞ of queries to the

black-box functions, but quantum computers can finish the task
with a constant number of queries. The separation between the
quantum and classical query complexity is (almost) possibly lar-
gest one can achieve [16].

Quantum circuits for solving 2-fold and 3-fold FORRELATION prob-
lems [16] are shown in Fig. 1. For 2-fold FORRELATION problems, there
are 2 query operators Of 1 and Of 2 , which map each input basis state
jxi to f 1ðxÞjxi and f 2ðxÞjxi respectively, i.e., Ofk xj i ¼ f k xð Þ xj i.

3. Experimental background

Nuclear magnetic resonance (NMR) is a reliable technology for
studying small-to-medium size quantum information experiments
[22,23], and quantum simulation [24–28]. Motivated by the needs
of studying quantum information, many sophisticated techniques
of controlling nuclear spins have been developed.

Here all the experiments are carried out at room temperature
(295 K) on a Bruker Avance III 400 MHz spectrometer and the 13C
labelled Diethyl-fluoromalonate dissolved in d6 acetone is used
as a 3-qubit NMR quantum information processor. The structure
and Hamiltonian parameters of Diethyl-fluoromalonate are shown
in Fig. 2a where 13C, 1H and 19F nuclear spins respectively act as an
ancillary qubit and two work qubits. Moreover, the internal Hamil-
tonian of the system is given by

Hint ¼
X3

i¼1

pmiri
z þ

X3

j<k;¼1

p
2
Jjkr j

zr
k
z ; ð3Þ

The whole experimental procedure consists of three parts: (1)
state initialization, (2) realization of the quantum algorithm for
solving 2 (or 3)-fold FORRELATION problem, and (3) readout of the
expectation value of r1

z of the ancillary qubit 13C, which is equal
to the FORRELATION, i.e.,

r1
z

� � ¼ Uk; ð4Þ

for any k P 2. We note that for the NMR quantum computing, the
whole system, starting from the thermal equilibrium state, can be
converted to the pseudo-pure state (PPS) [29,30] q000 ¼
ð1� eÞI=8þ ej000i, using the spatial average technique [31]. To
check the success of preparing the PPS, a full quantum state tomog-
raphy (QST) [32] is carried out. The fidelity between the density
matrix prepared in experiment (qexp) and the target one in theory
(qth) is given by the following expression,

Fðqexp;qthÞ � trðqexpqthÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðq2

expÞtrðq2
thÞ

q
: ð5Þ

A spectrum of the PPS observed on 13C is shown in Fig. 3a.
The real parts of the initial state are shown in the last figure as
q0. Overall, the initial state can be well prepared in our setup;
the fidelity can reach up to 96.9%.

4. Experimental details

To solve the k-fold FORRELATION problem, a quantum circuit is
designed to obtain FORRELATION Uk � Uf 1 ;...;f k by measuring the

Fig. 1. (Color online) Quantum circuit for probing (a) 2-fold and (b) 3-fold
FORRELATION problems. The system is prepared at state j000i. O1 � Of 1 ;O2 � Of 2 ,
and O3 � Of 3 are query operators that map states jxi to f 1ðxÞjxi; f 2ðxÞjxi, and f 3ðxÞjxi
respectively, wheref 1ðxÞ; f 2ðxÞ; f 3ðxÞ 2 f1;�1g.
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