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a  b  s  t  r  a  c  t

Antimicrobial  use in  agriculture  is considered  a pathway  for the selection  and  dissemination  of  resistance
determinants  among  animal  and human  populations.  From  1997  through  2003  the  U.S.  National  Antimi-
crobial  Resistance  Monitoring  System  (NARMS)  tested  clinical  Salmonella  isolates  from  multiple  animal
and environmental  sources  throughout  the  United  States  for resistance  to panels  of 16–19  antimicrobials.
In  this  study  we  applied  two mixed  effects  models,  the  generalized  linear  mixed  model  (GLMM)  and
accelerated  failure  time  frailty  (AFT-frailty)  model,  to  susceptible/resistant  and interval-censored  mini-
mum  inhibitory  concentration  (MIC)  metrics,  respectively,  from  Salmonella  enterica  subspecies  enterica
serovar  Typhimurium  isolates  from  livestock  and  poultry.  Objectives  were  to compare  characteristics
of  the  two  models  and  to  examine  the  effects  of  time,  species,  and  multidrug  resistance  (MDR)  on  the
resistance  of isolates  to individual  antimicrobials,  as  revealed  by  the  models.  Fixed  effects  were year
of  sample  collection,  isolate  source  species  and  MDR  indicators;  laboratory  study  site  was  included  as  a
random  effect.  MDR  indicators  were  significant  for every  antimicrobial  and  were  dominant  effects  in  mul-
tivariable  models.  Temporal  trends  and  source  species  influences  varied  by  antimicrobial.  In  GLMMs,  the
intra-class  correlation  coefficient  ranged  up to 0.8, indicating  that  the  proportion  of variance  accounted
for  by  laboratory  study  site  could  be  high.  AFT  models  tended  to be  more  sensitive,  detecting  more  curvi-
linear  temporal  trends  and  species  differences;  however,  high  levels  of  left-  or  right-censoring  made
some  models  unstable  and  results  uninterpretable.  Results  from  GLMMs  may  be biased  by  cutoff  criteria
used  to  collapse  MIC data  into  binary  categories,  and  may  miss  signaling  important  trends  or  shifts  if the
series  of antibiotic  dilutions  tested  does  not  span  a  resistance  threshold.  Our  findings  demonstrate  the
challenges  of  measuring  the  AMR  ecosystem  and  the  complexity  of interacting  factors,  and  have  impli-
cations  for  future  monitoring.  We  include  suggestions  for  future data  collection  and  analyses,  including
alternative  modeling  approaches.

Published  by Elsevier  B.V.

1. Introduction

Antimicrobial resistance (AMR) is a serious global threat to
animal and human health. Antimicrobial use in agriculture is
considered a pathway for the selection and dissemination of deter-
minants of resistance; consequently, the purposes and uses of
antimicrobials in animal agriculture have raised concerns among
stakeholders and prompted multiple agencies to respond. The U.S.
Department of Agriculture (USDA) established an Action Plan for
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AMR  monitoring and response (USDA, 2014), and the U.S. White
House has implemented a multi-agency National Action Plan for
Combating Antibiotic Resistant Bacteria (U.S., 2015). The U.S. Food
and Drug Administration (FDA) has issued guidances for food ani-
mal  and veterinary pharmaceutical industries seeking to eliminate
the use of medically important antimicrobials for growth promo-
tion in animal agriculture and to bring the remaining therapeutic
uses under veterinary oversight (FDA, 2012, 2013). The U.S. Centers
for Disease Control and Prevention’s most recent report on antibi-
otic resistance in the United States (CDC, 2013) categorized drug
resistant non-typhoidal Salmonella and Campylobacter as serious
threats. Each of these reports and initiatives cites gaps in knowledge
and emphasizes the importance of surveillance and monitoring,
research and development, and the need to strengthen capacity for
detection and response to urgent and emerging threats. Analyses of
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data collected systematically and targeting animals, food products
and consumers across broad geographies are essential components
of monitoring and response systems.

The ability to discern trends in AMR  monitoring data may  be
influenced by the AMR  metric. Quantitative metrics such as min-
imum inhibitory concentrations (MICs) are often categorized into
susceptible (S), resistant (R), or intermediate (I, usually combined
with S) and interpreted via internationally accepted breakpoints
or epidemiologic cutoffs. Investigators modeling dichotomous S/R
values or interval-bounded MIC  values via logistic regression, sur-
vival analyses, and a Bayesian implementation of a multilevel
regression have demonstrated shifts and differences in suscepti-
bility (Stegeman et al., 2006; van de Kassteele et al., 2012; CDC,
2013).

In this study we investigated mixed effects regression modeling
of AMR  metrics of clinical isolates from livestock and poultry spec-
imens tested as part of the U.S. National Antimicrobial Resistance
Monitoring System (NARMS) (CDC, 2014a,b). The first objective was
to compare generalized linear mixed models (GLMM)  and acceler-
ated failure time frailty (AFT-frailty) models to ascertain similarities
and differences between the two approaches. The second objective
was to examine trends and influential covariates for Salmonella iso-
late AMR fixed effects while adjusting for random variability within
a national laboratory network. We  describe results obtained with
the two approaches and the complexity of measuring influential
factors for AMR, and suggest improvements in data collection and
analyses.

2. Materials and methods

2.1. Data

From 1997 to 2003 a component of NARMS’ surveillance activ-
ities was directed at testing Salmonella isolates for antimicrobial
susceptibility from diagnostic fecal samples of clinically ill domes-
tic animals. A subset of isolates submitted by practitioners to State
veterinary diagnostic laboratories (VDLs) was tested for suscepti-
bility at the USDA’s Agricultural Research Service (ARS) laboratory
in Athens, GA. Isolates either came directly from State VDLs or were
recovered from a bank of stored isolates at the USDA’s National
Veterinary Services Laboratories (NVSL) in Ames, IA. Because NVSL
isolates also originated from VDLs, isolates from the VDLs that
submitted directly to the ARS were excluded when isolates were
selected from the NVSL bank. Isolates were randomly sampled,
stratified by source. Susceptibility testing was performed according
to NARMS protocols. The number of antimicrobials in test pan-
els varied from 16 to 19. Serial dilutions within panels depended
on the specific antimicrobial and could vary over time. MICs were
determined by broth microdilution according to Clinical and Lab-
oratory Standards Institute (CLSI) standards, with dilutions and
number of wells per antimicrobial selected to span a range con-
taining expected breakpoints (USDA, 1998a,b, 1999, 2000, 2001,
2002, 2003).

The NARMS dataset contained 215 Salmonella serotypes.
Salmonella enterica subspecies enterica serovar Typhimurium (S.
Typhimurium) isolate data were selected for modeling based on
the serotype’s broad host range. According to the NARMS program,
in 1998–2000, S. Typhimurium represented 10–20% of Salmonella
isolations from food animal carcasses, and in the U.S. in 2000
accounted for 19% of human Salmonella infections (Rigney et al.,
2004).

Covariates were based on available data and included the isolate
source species, year of specimen collection, the study site (labora-
tory) of isolate testing, and an indicator of multidrug resistance
(MDR). MDR  is a major animal and public health concern and is

characteristic of some phage types of S. Typhimurium, e.g., DT
104, which began circulating globally in the 1990’s (McDermott,
2006). MDR  phenotypes, such as the ACSSuT phenotype for the
chromosomal genotype that encodes resistance to ampicillin, chlo-
ramphenicol, streptomycin, sulfonamides, and tetracycline, are
clinically important for both animals and humans and are specifi-
cally monitored by NARMS (Greene et al., 2008; USDA, 2003).

2.2. Statistical analysis

2.2.1. Mixed effects logistic regression
GLMMs  assume a conditional response distribution from the

exponential family and accommodate fixed and random effects
(McCulloch and Searle, 2001). In this study, S/R responses were
modeled via the binomial distribution with a logit link. For each
isolate (i) and antimicrobial (a = 1,. . .,A), fixed effects were source
species of isolate (s), time (t = year of isolate collection—1997), and
an MDR  indicator (m), the number of other (A-1) antimicrobials the
isolate was  resistant to. Study site (l) was  included as a random
intercept. In our implementation, yia|�l = 1 if isolate i was resistant
to antimicrobial a and zero else, �∼Normal

(
0, �2

G

)
.

Parametric estimation of GLMM coefficients is complex, with
the computational method dependent on data characteristics,
model specification, and estimates needed (Bolker et al., 2008).
Because one objective of our study was to compare parameter esti-
mates between GLM and AFT-frailty models, and because some
study sites and source species had small numbers of isolates, we
used maximum likelihood (ML)-Laplace approximation for param-
eter estimation. However, ML  estimation requires integration of
likelihoods over all possible values of random effects, with residual
error variance, �̂2

R , not estimable concurrently with the intra-class
(study site) covariance, �̂2

G . We used residual pseudolikelihood

(RSPL) to obtain the intra-class correlation coefficient, ÎCa, the pro-
portion of random study site variance to total variance (McCulloch
and Searle, 2001).

For each antimicrobial, individual covariates were tested in the
univariate and those significant at p ≤ 0.20 were kept for multi-
variable modeling. In each candidate model, m = 0,. . .,  A-1, and
t = 0,. . .,6, were entered as linear and quadratic terms. Fixed effects,
including linear and quadratic terms, were maintained in multivari-
able models if significant (at p ≤ 0.05 level), and if the inclusion of
the term contributed to the best fit of the model based on Akaike
information criteria (AIC) values and model parsimony. Because
we were interested in comparing coefficient estimates for trends
between the two model types, we report ˆ̌ estimates and plots
of the linear components (where LC = ˆ̌ 1x + ˆ̌ 2x2; x = 0, . . .,  6, for
time and x = 0,. . .,A-1,  for the MDR  indicator) for individual antimi-
crobials for comparison with AFT-frailty model ˆ̨ -coefficients and
linear components. Analyses were conducted with R and SAS sta-
tistical software (R Core Team, 2013; SAS Institute Inc., 2008).

2.2.2. Accelerated failure time-frailty model
The AFT-frailty model is a parametric survival model with fixed

effect covariates multiplicative with respect to MIC  values and a
shared frailty, an unobserved random effect, appropriate for mod-
eling interval censored data (Collett, 2003; Lindsey and Ryan, 1998).
AFT-frailty models require assumptions for distributions for the
hazard and the random effect. The Weibull distribution allows a
monotonically increasing or decreasing hazard over the series of
concentrations of antimicrobials tested. The general Weibull AFT
model for MICia with a shared frailty is:

hij (MICia) = e−� iaj�p(e−� iajMICia)p−1

with linear component, �iaj = ˛′xiaj + �j for isolate i, antimicrobial
a, in study site group j, �∼Gaussian

(
1, �

)
(Collett, 2003). The ˆ̨
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