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a b s t r a c t

A critical review of Molkov’s phenomenological model including the model’s assumptions and sub-
models is presented in this article. First, the effect of an incorrect discharge sub-model is studied and
it is concluded that the choice of discharge sub-model is crucial because it can substantially modify the
turbulence/stretch function, the mass distributions and the flame position. Therefore, a discharge sub-
model should only be chosen when the sub-model is in agreement with the flame position and the
residual unburnt gas mass reaches a reasonable value. Second, the equivalent flame radius and the
apparent flame velocity (computed internally by Molkov’s model) are found to depend on three different
effects: the free flameball expansion, the adiabatic compression/extension and the venting process.
Third, the interpretation of the turbulence function should account for the effect of the propagation
mode and the spatial variation of the local flame speed. Fourth, the jet effect model related to hinge
panels can be improved; therefore, a new model is presented. Fifth, the universal correlation and the
two-lumped-parameter model are studied. Despite the high correlation reported in previous publica-
tions, it is concluded that the two-lumped-model has significant limitations and should be improved if a
variable stretch/turbulence function is utilized, which will require the utilization of “usual” discharge
coefficients. Finally, it is shown that the inverse problem with a variable stretch/turbulence function and
a reasonable discharge coefficient can be utilized to accurately backfit experimental data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Venting is one of the most effective techniques used to reduce
damage in vessels subjected to internal gas explosions. Therefore,
methods to predict vent effects are essential if partially confined
vessels are to be built to withstand these gas explosions. These
models aim to restrict the maximum pressure (impulse, or pressure
time-history) during an accidental explosion to within an accept-
able range.

Molkov’s phenomenological model of vented explosions was
originally derived for partially confined vessels with a unique
opening and filled with a flammable homogeneous gas/oxidant
mixture (Molkov and Nekrasov, 1981). Molkov et al. subsequently
extended the model to include vessels with multiple vents and/or
different vent mechanisms (which have been generally described
by SDoF systems) (Molkov, Eber, Grigorash, Tamanini and Dobashi,

2003), (Molkov et al., 2004b), (Molkov et al., 2005b). Molkov’s
model assumes that unburnt and burnt gas fractions can be
described separately by the ideal gas Equation of State (EOS), with
both gasses following adiabatic processes. Thus, themodel depends
on several thermodynamic and combustion coefficients related to
the unburnt and burnt mixtures. Molkov’s model also assumes that
the flame is propagates laminarly following a spherical surface
mode. The model’s derivation relies on conservation of mass, vol-
ume and energy (Molkov et al., 2004a,b) and assumes that pressure
is uniform throughout the enclosure but varies with time. Outflow
gas mass rates are determined from classical equations of pres-
surized vessels assuming isentropic gas flows through the valves or
orifices. The model is described by a set of three ordinary differ-
ential equations (the dimensionless pressure, the dimensionless
burn mass and the dimensionless unburnt mass, appendix) and
another second order differential equation related to the SDoF
mechanismwhich describes the vent system and/or variation in the
vent area.

Overall, Molkov’s model depends on three transient functions* Corresponding author.
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that relate the rate of change of the burnt and unburnt gases. They
are: i) the discharge model, ii) the vent area model (for variable
vent areas), and iii) the burning rate. The implications of these three
functions for the model are discussed in the following sections.
Possible improvements include: i) extension of equations after
combustion has finished, ii) a variable stretch/turbulence function
which is not restrained to a monotonic growing sequence, and iii)
vent model improvements associated with more accurate jet effect
coefficients for hinge covers and inclusion of dynamic effects
resulting from arresting and/or cover activation. Finally, the inverse
problem with a non-monotonic stretch/turbulence function and a
constant reasonable discharge coefficient has been studied based
on numerical optimization tools in order that the simulated pres-
sure time-history is backfitted by small time segments to the
experimental data, obtaining a more accurate burning rate function
which is similar to results obtained through the multiple equations
inverse problem (Hernandez, Abdel-jawat, & Hao, 2015).

2. Discharge model

Discharge models are used to estimate the amount of gas
expelled from a vessel through vent devices due to the difference
between the internal and the external pressure (i.e., the over-
pressure) attained during the deflagration process. These discharge
models are based on outflow mass discharge rates calculated ac-
cording to traditional backfitted theoretical equations derived for
pressurized vessels ventilated by orifices or valves (or the standard
orifice equation). That is, the mass flow is computed assuming an
isentropic mass flux and described by the following equation
(Ferguson and Kirkpatrick, 2001),

dm
dt

����
out

¼ m$FðtÞ$GðtÞ (1)

where, G(t) ¼ the mass flow rate per unit area or mass flux (kg/
m2*s), m¼ discharge coefficient, F(t)¼ vent area (m2) (related to the
vent area model).

The mass flow rate (G(t)) depends on the expelled gas mixture,
the overpressure and the outflow velocity (sonic or subsonic re-
gimes). This quantity is described in the appendix and not dis-
cussed further in this article. The variation of the vent area with
time (F(t)) is determined by a system of differential equations
which describe the dynamic behavior of the vent mechanism as a
function of the overpressure-time history. This mechanism is
defined as the vent area model and is discussed in the following
section.

2.1. Discharge coefficient

The discharge coefficient (m) takes into account the Venturi ef-
fect and the energy losses due to turbulence that arise during the
ventilation process. In other words, the discharge coefficient can be
understood as a factor that accounts for the effective vent area
(m$F(t)) through which pressurized gases are discharged without
energy loss. Therefore, the discharge coefficient should be less than
or equal to one. Bradley and Mitcheson (1978) recommend that a
constant discharge coefficient of m ¼ 0.6 be used for vessels with
sharp edges depressurized by vents whose areas are smaller than
the cross-section of the vessel. However, other discharge coefficient
values have been recommended for other kinds of vent geometries
and/or enclosure sizes and shapes. For instance, Yao et al. (1969)
recommend ignoring energy losses and setting m ¼ 1.0 when an
entire end of an enclosure is used as vent. This group also suggested
that the effective vent area is almost equal to the entire vent area
(m ¼ 0.98) when a rounded nozzle is utilized as an opening. Other

studies have suggested considering the discharge coefficient vari-
able with time; for example, approaches that change according to
the flow regime or the Reynolds number (Annand and Roe, 1974).
Overall, irrespective of the choice of discharge coefficient, either
simple or complex discharge models (which consider several con-
ditions such as the vent size, the kind of vent mechanism, the vent
position, the enclosure geometry, the outflow velocity, the vent
orientation and the induced ventilation turbulence) can be used
indiscriminately without reducing generalization of Molkov’s
equations. In most cases, a constant discharge coefficient can be
used without a significant reduction in the accuracy of the model.

In the situation that the vent area is variable with time, the
discharge coefficient should be compatible with the vent area
model in order that both can predict the effective vent area. When
pressurized gases are discharged through valves (with variable vent
areas), experimental studies have shown that the discharge coef-
ficient (m ¼ 0.6) does not change significantly if the vent area is
calculated through the curtain area
(F(t) ¼ min(Coverperimeter$u(t),FN)) rather than the full seat area (FN)
(Annand and Roe, 1974). Similarly, when pressurized gases are
discharged through pull out panels the discharge coefficient does
not change significantly because inertial vent panels have been
found to behave in a similar way to valves.

Derivations of the mass flow expelled from a pressurized vessel
through valves assume that the gas inside the vessel is resting
(average velocity equal to zero). However, the combustion attained
during the course of the flame triggers the expansion of gases
which pushes the gas ahead of the flame, generating a velocity
gradient just before the gas is expelled. To “compensate the dif-
ference between real and calculated mass out-flow rates, in
particular due to the non-zero velocity of outflowing gases inside
the enclosure proposed during deduction of standard orifice
equations” (Molkov, Dobashi, Suzuki and Hirano, 2000), Molkov
et al. justified the use of “unusual” discharge coefficient values (as
high as m ¼ 1.50 for vessels without obstructions (Molkov et al.,
2000) and m ¼ 3.15 for vessels with obstructions (Molkov et al.,
1997a,b)).

The uniform pressure assumption, however, contradict the sig-
nificant gas velocity statement. A uniform pressure implies that the
dynamic pressure is insignificant. In contrast, a substantial gas
velocity should be related to a gradient of pressure along the vessel.
In cases where the combustion is described by a slow deflagration
process (assuming that the gas velocity is slower than 25% of the
sound speed and/or the Mach number is less than 0.25, Ma¼ vgas/
vsound), the dynamic pressure is insignificant in comparison to the
effect of overpressure caused by the explosion. This can be proved
by estimating the dynamic pressure associated with the gas ve-
locity based on the Bernoulli principle and equal to DPeq¼ vgas

2 $rmix/
2¼Ma2$gmix$P/2; thus, the equivalent pressure is only increased
4.4% (DPeq¼ 0.252$1.4$P/2¼ 0.044$P, and gmix¼ 1.4) when the gas
travels with a hypothetical gas velocity associated with a Mach
number of 25% (vgasz 88m/s for stoichiometric methane/air mix-
tures), or increased 0.7% for Mach numbers lower than 10%
(vgasz 35m/s). Therefore, the increase of dynamic pressure due to
the gas velocity effect can be ignored in most cases. According to
Molkov’s method, this effect is ignored and the pressure is
considered uniform throughout the enclosure space and variable in
time, if the Mach number derived from the apparent flame velocity
is less than 0.1 (Vladimir Molkov, Dobashi, Suzuki and Hirano,1999)
or 0.25 (Molkov et al., 1997a,b). As the uniform pressure assump-
tion is essential for Molkov’s model derivation, a flame Mach
number equal to 0.10 (or 0.25) has been conventionally considered
like the limit of application of Molkov’s method. Observe that the
gas velocity should be less than the flame velocity; therefore, the
effect on the dynamic pressure was studied with the maximum
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