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a  b  s  t  r  a  c  t

Although  the  assessment  of  toxicity  of  various  agents,  -omics  (genomic,  proteomic,  metabolomic,  etc.)
data  has  been  accumulated  largely,  the  acquirement  of toxicity  information  of  variety  of molecules
through  experimental  methods  still  remains  a  difficult  task.  Presently,  a systems  toxicology  approach
that  integrates  massive  diverse  chemical,  genomic  and  toxicological  information  was  developed  for  pre-
diction  of  the  toxin  targets  and  their  related  networks.  The  procedures  are: (1)  by  use  of two  powerful
statistical  methods,  i.e., support  vector  machine  (SVM)  and  random  forest  (RF),  a  systemic  model  for
prediction  of  multiple  toxin–target  interactions  using  the  extracted  chemical  and  genomic  features  has
been developed  with  its  reliability  and  robustness  estimated.  And  the  qualitative  classification  of  tar-
gets  according  to  the  phenotypic  diseases  has  been  taken  into  account  to  further  uncover  the biological
meaning  of  the  targets,  as  well  as to  validate  the  robustness  of the  in  silico  models.  (2)  Based  on the
predicted  toxin–target  interactions,  a genome-scale  toxin–target-disease  network  exampled  by  cardio-
vascular  disease  is generated.  (3)  A topological  analysis  of  the network  is  carried  out  to identify  those
targets  that  are  most  susceptible  in  human  to topical  agents  including  the most  critical  toxins,  as well  as
to uncover  both  the  toxin-specific  mechanisms  and  pathways.  The  methodologies  presented  herein  for
systems  toxicology  will  make  drug  development,  toxin  environmental  risk  assessment  more  efficient,
acceptable  and  cost-effective.

Crown Copyright ©  2012 Published by Elsevier Ireland Ltd. All rights reserved.

1. Introduction

With thousands of new chemicals being synthesized year by
year, increased efforts are being devoted to evaluating their tox-
icity properties. Undoubtedly, the toxicity evaluation task of such
high volume of compounds is of fundamental importance to both
the ecosystems and human health. Normally, in silico methods
are effective ways for the job of virtual screening of unknown
molecules even before their synthesis (Pritchard et al., 2003; Wang
et al., 2008; Zhang et al., 2012), which clearly is important to
complement the experimental approaches for reducing time and
cost, and thus accelerating the prioritization of those compounds
of interest. However, all these techniques have their inherent
limitations in either the predictivity, application domain or even
algorithms themselves (Butina et al., 2002). More severely, most
available toxic data involve diverse kinds of compounds, but are
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evaluated by a same or similar toxicological endpoint (lethal doses,
macroscopic toxicity) (Huang et al., 2009). This makes the precise
prediction of a toxin mechanism from a molecular level is often
impossible, let alone to consider the multiple toxin–targets inter-
actions.

Due to both the vastness of chemical space (toxins) and the
diversity of biological systems (targets), the prediction and char-
acterization of the two  domains’ interface is difficult. In addition,
the interaction patterns of toxins and targets are usually compli-
cated by the fact that they are not simple one-to-one events, as
one toxin may  bind to multiple target proteins, and different tox-
ins may  also bind to the same protein target with similar biological
activities (Yabuuchi et al., 2011). Thus it is compelling for consid-
ering multitarget strategies over single-target approaches to study
the complex interactions, which strategies, however, are seldom
studied at present.

Recently, several novel attempts have been made to fulfill this
goal. For instance, a chemical genomics approach whose salient
motivation is that similar ligands may  interact with similar pro-
teins has been used to explore novel bioactive molecules of a
target (Klabunde, 2007; Yamanishi et al., 2010). The network
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approaches may  also provide a chance to explore complex biosys-
tem interactions, which in biology have been proven useful for
organizing and/or extracting meaningful information from high-
dimensional biological data (Yu et al., 2012). And advances in
this direction should be helpful to uncover the biological signifi-
cance of ligand–target interactions. Despite of these efforts, to our
knowledge, little is known of the underlying complex interactions
between the toxins and targets, and a systems-level characteriza-
tion of multiple toxin–target associations has not yet been reported
up to date.

Generally, the quantitative prediction of biological activities
(IC50, EC50, Ki values, etc.) of chemicals should be valuable for
precise charactering these candidates. But in many cases, it is not
easy to comprehensively retrieve enough reliable biological infor-
mation for ligands, particularly for large datasets. This is also true
for the present compound–protein interactions of this work, which
are consisted of heterogeneous data of various resources with dif-
ferent bioassay systems. In addition, it is also difficult to construct
an accurate model for predicting activity values of ligands due to
the unavailability of reliable and consistent activity information
from the present available data. However, a qualitative prediction
system that identifies the potential toxin–target relationships may
eventually overcome the above limitations. For example, the clas-
sification methods usually do not need accurate biological data
but a qualitative description of biological groupings of chemicals
is enough to build reasonable models. For those widely applied
mathematical tools, such as the support vector machine (SVM)
and random forest (RF), generally speaking, they are similar to
the multiple linear regression (MLR) method. The main difference
is that MLR  is mainly involved in solving linear fitting problems
whereas SVM and RF is nonlinear, which thus in most cases are
more appropriate to biological problems due to the inherent non-
linear property in biology.

In this work, a series of computational models were established
to identify the complex toxin–target interactions. The procedures
are: firstly, by employing two powerful statistical methods, i.e.,
SVM and RF, the models were constructed with their predictive
capacity evaluated by both the internal cross-validation and exter-
nal tests, which ended up with good performance in both the
reliability and robustness. Subsequently, according to the appli-
cability domain (AD) and feature analysis of the models, those
compounds predicted with high or poor accuracies were individu-
ally identified. Finally, as an example, a genome-scale toxin–target
network for cardiovascular diseases was generated, and the topol-
ogy analysis of which may  provide us further insights into the
toxin–target interaction mechanism and specific action pathways.

2. Materials and methods

2.1. Building of dataset

Data for toxins and targets with their interaction information were extracted
from the Toxin and Toxin–Target Database (T3DB, http://www.t3db.org), which cur-
rently contain over 2900 small molecules and peptide toxins, 1300 targets and more
than  33,800 toxin–target associations. The original database was manually built
from  numerous sources, including the electronic databases, government documents,
textbooks and scientific journals following such criteria: (i) these compounds can be
found in the home, environment or workplace with medical consequence records
like  acute reaction, injury or death; (ii) they are routinely identified as hazardous
resources in relatively low concentrations (<1 mM for some, <1 �M for others); (iii)
they  appear on multiple toxin/poison lists provided by the government agencies or
the  toxicological and medical literature; (iv) these substances must be identified as
specific toxic components with known chemical structures.

Since some molecular descriptors of chemicals and peptides cannot be cal-
culated, two kinds of toxic substances, i.e., arsenic, lead, mercury, phosphorus,
restrictocin, etc., were omitted in this study. Additionally, those compounds includ-
ing sodium, potassium salts were calculated for their water-dissolved products to
obtain the molecular descriptors. Finally, a data set of 26,277 toxin–target pairs
composed of 2257 toxins and corresponding 949 targets was compiled. The names
and ID codes of the toxins and proteins were provided in Table S1.

Supplementary material related to this article found, in the online version, at
http://dx.doi.org/10.1016/j.tox.2012.12.012.

2.2. Calculation of chemical and protein descriptors

Chemical descriptors were calculated using DRAGON 5.4 program
(http://www.talete.mi.it/index.htm), which has been proven successful in
evaluation of molecular structure–activity or structure–property relationships
(Wang et al., 2010). As a result, 1664 descriptors were calculated from 20
molecular descriptor blocks: constitutional descriptors, topological descriptors,
two-dimensional (2D) autocorrelations, molecular properties et al. (with details
referred to DRAGON manual). After eliminating those descriptors that were
not available for each molecule or were constant values for all molecules, 1547
molecular descriptors were finally adopted in the subsequent processing (Table
S2).

Supplementary material related to this article found, in the online version, at
http://dx.doi.org/10.1016/j.tox.2012.12.012.

The dipeptide composition was used to transform the variable length of pro-
teins to the fixed length feature vectors, which has already been used in the protein
structural classifications, compound–protein interaction predictions and protein
subcellular localizations fields (Yabuuchi et al., 2011). In our previous work, we also
adopted the dipeptide composition-based descriptors to predict the drug–target
interactions (Yu et al., 2012). Dipeptide composition encapsulates information about
the fraction of amino acids and their local order, which gives a fixed pattern length
of  400 (20 × 20). The fraction of each dipeptide was calculated using the following
equation:

Fraction of dep(i) = total number of dep(i)
total number of all possible dipeptides

(1)

where dep(i) is one dipeptide i of 400 dipeptides.

2.3. Construction of training and test sets

To distinguish the interacted toxin–target pairs from the non-interaction ones,
an  experimental dataset including both positive and negative samples which
were represented by concatenating chemical descriptors and protein descriptors
(1547 + 400 dimensions) was firstly established. This dataset was then split into
two subsets, i.e., a training set used to build the model and an independent test set
to  validate the model’s accuracy. According to whether the toxin and/or the target
in  the test set were in the training set or not, we  designed four models: Model I for
“general” prediction (all toxins versus all targets); Model II for new-toxins versus
known-targets; Model III for known-toxins versus new-targets; Model IV for new-
toxins versus new-targets. Toxins and targets in the training set are called ‘known’
whereas those not in the training set are called ‘new’.

In  details, the training and test sets of the four models were produced as fol-
lows: (1) creating the positive training and test sets. Firstly, an initial positive test
set and an initial positive training set were obtained by randomly splitting the whole
positive samples. Then, for Model I, the initial positive training and test sets were
directly used as final positive training and test sets, respectively. For Models II and
III,  the final subdata sets were generated by removing the samples of known tox-
ins/new targets (or the new toxins/known targets) in the initial positive test and
training sets. And deleting the samples containing the known toxins and targets
from the initial positive test set generated the final subsets of Model IV. (2) Creating
the  negative training and test sets. As information about non-interaction pairs was
unavailable, we  randomly generated the negative samples from the unknown inter-
action pairs not overlapping with those interaction pairs. To ensure the balance of
positive and negative data, an equal number of negative samples were added to each
positive training and test sets by randomly choosing the unknown interactions in
the corresponding positive training or test sets. As a result, for Model I, II, III and IV,
their training sets contained 42,044, 42,250, 41,942, 39,816 samples respectively,
and  the test sets contained 10,510, 10,304, 10,612 and 290 samples respectively. To
avoid the attributes in greater numeric ranges dominating those in smaller numeric
ranges, these descriptor vectors were separately scaled to the range of −1 to 1.

2.4.  Support vector machine

The support vector machine developed by Vapnik (1998) is a well-known large
margin classifier. Due to its remarkable generalization performance, it has been
used in bioinformatics and cheminformatics (Yu et al., 2012). The notable feature
of  SVM is that it explicitly relies on the structure risk minimization (SRM) princi-
ple  from statistical learning theory (Cristianini and Shawe-Taylor, 2000), which is
superior to the traditional empirical risk minimization (ERM) principle employed
in  conventional neural networks (Jiang et al., 2006). SVM classification is based on
constructing a maximal margin hyperplane in the high multidimensional space that
optimally separates two different groups. The maximal margin is defined as the
closest distance from any point to the separating hyperplane.

To describe an SVM precisely, suppose our data are given as a set of labeled
training vectors (xi , yi), i = 1, . . ., m)  that are classified to two classes (yi ∈ {−1, 1}) (1
and −1, in our case, representing the interaction and non-interaction toxin–target
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