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a b s t r a c t

With the increasing complexity of the hazardous process operation, potential accident mod-

elling is becoming challenging. In process operation accidents, causation is a function of

nonlinear interactions of various factors. Traditional accident models such as the fault tree

represent cause and effect relationships without considering the dependency and nonlinear

interaction of the causal factors.

This paper presents a new non-sequential barrier-based process accident model. The

model uses both fault and event tree analysis to study the cause–consequence relationship.

The dependencies and nonlinear interaction among failure causes are modelled using a

Bayesian network (BN) with various relaxation strategies. The proposed model considers

six prevention barriers in the accident causation process: design error, operational failure,

equipment failure, human failure and external factor prevention barriers. Each barrier is

modelled using BN and the interactions within the barrier are also modelled using BN.

The proposed model estimates the lower and upper bounds of prevention barriers failure

probabilities, considering dependencies and non-linear interaction among causal factors.

Based on these failure probabilities, the model predicts the lower and upper bounds of the

process accident causation probability. The proposed accident model is tested on a real life

case study.

© 2016 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

In recent times, chemical process industries (CPI) are dealing with

highly hazardous chemicals at different stages of their process oper-

ations. The dynamic technological complexity of process systems

which include equipment, management and organisation decisions,

operators, operating conditions, external environmental conditions

and their various interactions are major causes of accidents in

process industries. This complexity has numerous dimensions; inter-

active complexity is on the increase in systems currently being built.

Process systems now contain large amounts of dynamically interac-

ting components. In the current complex system, humans interact

with technology and produce an outcome due to their collabora-

tion which cannot be accomplished either by technology or humans

operating independently. Therefore, safe operation of the modern
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complex system demands a thorough understanding of interactions

and interrelationships between, human, technical, environmental

and organisational phases of the system (Qureshi, 2008; Leveson,

2004).

Recent accident analysis of CPI accidents has shown an increase in

the frequency of accidents in most regions of the world, probably due to

these complex interactions (Kidam et al., 2014; Khan and Abbasi, 1999).

Process accidents are normally due to a chain or sequence of failure of

events caused by failure of one or several physical components and

abnormalities of process parameters (Tan et al., 2013).

Process accident models give detailed features of accidents and

clearly express the relationship between causes and effects. They

provide an adequate explanation of why accidents occur and they

are a very useful technique for process risk assessment. Process

accidents normally follow three steps: initiation, propagation and
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termination (Crowl and Louvar, 2001) and any of these steps could

lead to hazardous events.

Accident models systematically relate causes and consequences

of the events and play a significant role in accident investigation and

analysis. Accident models primarily tend to answer two major broad

questions: (i) why accidents occur and (ii) how accidents occur. Clas-

sification of accident models can be done in several ways. Accident

models are broadly categorised as either traditional or modern acci-

dent models. Traditional accident models are further sub-grouped into

sequential and epidemiological models. They are primarily descriptive

models that lack predictive capacity and emphasise mainly human,

organisational and management factors. Modern accident models can

be sub-classified into three sub-categories: systematic, formal, and

dynamic accident models (Al-shanini et al., 2014a,b; Qureshi, 2008).

One principal limitation of these accident models is that they are

usually case-specific, commonly descriptive, qualitative and merely

conventional models that cannot utilise accident precursor data to

develop prevention strategies. Those that have quantitative units

had limitations of data scarcity and uncertainty. However, dynamic

accident models have a great benefit of simplicity because of their

sequential arrangement or layout and because non-linear interactions

can be represented within the main framework. The dynamic accident

model is predictive and uses real time precursor data to evaluate the

likelihood of all available end-states (Al-shanini et al., 2014a,b).

Kujath et al. (2010) developed a process accident model for offshore

oil production to prevent offshore process accidents using the con-

cept of safety barriers. Five major prevention barriers were connected

alongside the accident propagation path to prevent and mitigate the

consequences of hydrocarbon release. Fault tree analysis was used to

analyse the failure of prevention barriers, and consequences were ana-

lysed using an event tree. The end state precursor data in the event

tree analysis were used to update the failure probabilities of safety bar-

riers via the Bayesian theorem. Despite the application of this model

to the Piper Alpha (1988) and BP’s Texas city refinery (2005) the model

still exhibits some limitations, which are: (1) There is only provision

for operational and technical failures; all other accident contributory

factors such as human and organisational errors were not part of the

model; and (2) Other accident initiating events such as an explosion

were not considered (Rathnayaka et al., 2011).

In order to overcome the obvious weakness in Kujath’s model,

Rathnayaka et al. (2011) provided an extension of this model by incor-

porating other factors (i.e., management and organisational factors)

that were completely neglected by Kujath into a new accident model

called System Hazard Identification, Prediction and Prevention (SHIPP)

methodology. All accident contributory factors were modelled into

seven prevention barriers. In this model, accident precursor data were

used to update the failure probabilities of every barrier with the

Bayesian updating technique. The SHIPP model was validated for two

LNG facilities effectively and the results obtained were highly promis-

ing (Rathnayaka et al., 2010, 2012).

However, in spite of the promising results obtained with the use

of SHIPP methodology, the model still has some weaknesses that may

affect the accuracy of the results obtained. These weakness are: (1)

External hazards are not considered in the model. (2) The model pre-

sumed the causes of failure within safety barriers were independent,

although in reality they are interdependent and this could grossly affect

the results. (3) Provision was not made for other factors that were not

accounted for in the fault tree model of prevention barriers. (4) Nonlin-

ear interaction of various factors were not considered.

This paper proposes a novel non-sequential barrier based accident

model, in which interdependency and nonlinear interaction among

accident contributory factors within safety barriers are modelled for

process accidents. This work also proposes major influencing factors of

process accidents. Considering dependencies and non-linear interac-

tion among causal factors, the proposed model is capable of estimating

the lower and upper boundary of prevention barrier failure probabili-

ties. The remaining parts of this paper are organised as follows. Section

2 provides a brief description of basic characteristic of BNs. Section 3

presents canonical models based on the assumption of independence

of causal influence. Section 4 presents the proposed accident model.

Section 5 demonstrates the application of the proposed model using

the Richmond refinery accident. Section 6 presents the results and

discussion. Finally, Section 7 provides the conclusion.

2. Bayesian network

Bayesian networks (BNs) are direct acyclic graph (DAG) with
various nodes representing variables and arcs which repre-
sent direct dependencies among the variables. A BN usually
consists of both qualitative and quantitative parts. The qual-
itative part is an acyclic directed graph naturally showing the
causal structure of the domain; the other quantitative part
denotes the joint probability distribution of its variables. All
variables in a BN are adequately represented in a conditional
probability table (CPT). A CPT provides complete specification
of probabilistic interaction that has the capability to model
any type of probabilistic dependence between a discrete node
and its parents. The probabilities in the CPT denote the prob-
abilities of each state given the state of the parent variable.
However, if a variable in BN does not have parent variables,
the CPT denotes the prior probability variable (Kraaijeveld and
Druzdzel, 2005).

A Bayesian network represents the joint probability distri-
butions for a set of discrete random variables X, where X is
given as

X = (X1, X2, . . ., Xn) (1)

where n is finite in this case. Eq. (1) can be decomposed into
products of conditional probability distributions for each of
the variables provided their parent is known. In the case of a
root node with no parents, prior probability is used instead.
The joint probability distribution for a set of discrete ran-
dom variables X = (X1, X2, . . ., Xn) can be calculated by taking
the product of all the priors and their conditional probability
distribution (Kraaijeveld and Druzdzel, 2005). Mathematically
this is given by

P(x1, x2, . . ., xn) =
n∏

i=1

P(xi|pa(xi)) (2)

3. Canonical probabilistic models

Canonical models are advantageous because they make the
construction of a probabilistic model easy and also reduce
the computation time. One foremost challenge in using the
BN model to model practical problems is the difficulty that
arises in obtaining the numerical parameters that are required
to fully quantify it. Discrete joint probability distributions are
generally represented as CPTs, which are a collection of dis-
crete probability distributions of a variable conditional on its
given parents in the BN. The size of CPTs increases expo-
nentially with the number of parents in a BN. Therefore, it
is extremely difficult to build CPTs for variables having many
parents. This is because these numerical parameters in CPTs
are obtained from a database or from human expertise (Oniśko
et al., 2001; Diez and Druzdzel, 2007).

One way of overcoming the challenge of obtaining these
numerical probabilities is to apply the canonical models.
Canonical models permit building of probability distribution
from a fewer number of parameters (Bobbio et al., 2001). Noisy-
OR and Leaky Noisy-OR are typical examples of a canonical
model.
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