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a b s t r a c t

The objective of this study was to determine whether a novel fall detection model based on the statistical
process control chart performed better when the fall indicator was defined by a linear combination of
kinematic measures. To specify the fall indicator, an optimization procedure was performed in which
the trial and error method was used to determine the relative weightings of the selected kinematic mea-
sures associated with the optimal fall detection performance. The highest sensitivity, highest specificity,
and lowest sum of squared errors of the fall detection model obtained from this study were 97.3%, 99.2%
and 0.00133 respectively. These findings suggested that using the fall indicator defined by a linear com-
bination of kinematic measures can lead to improved fall detection performance compared to that
defined by a single kinematic measure.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fall detection has been recognized as an effective approach for
fall prevention (Bourke et al., 2007). It can minimize fall related
injuries by initiating timely medical treatment (Rajendran et al.,
2008). Besides, early detection of falls in the pre-impact phase
can help activate on-demand protection device, such as the inflat-
able airbag, so that any injuries caused by fall impacts can be
avoided (Tamura et al., 2009).

Kinematic measures have been widely used to define fall indica-
tors in the existing fall detection models. Advantages of using kine-
matic measures to define fall indictors are twofold. First, kinematic
measures can reflect changes of body dynamics due to falls in a
real-time manner. For example, Liu and Lockhart (2014a) revealed
that trunk angular kinematics during slip-induced backward falls is
clearly distinguishable from those during activities of daily living.
In an earlier study, we also found that kinematic measures such
as trunk vertical velocity and shank frontal velocity can distinguish
slip-induced falls from normal walking and slip recovery (Hu and
Qu, 2013). Second, body kinematic measures can be monitored
by wearable inertial sensors which make long-term tracking of fall
risks technically feasible. In fact, many researchers have recently
proposed fall detection approaches by using inertial sensors to

monitor body kinematics (Liu and Lockhart, 2013, 2014b;
Özdemir and Barshan, 2014).

Some fall detection models used a single kinematic measure as
the fall indicator (Rougier et al., 2007; Wu and Xue, 2008). For
example, in Wu and Xue (2008), a fall was considered to occur if
the trunk vertical velocity exceeded a pre-determined threshold.
A single kinematic measure may not sufficiently account for falling
dynamics. Therefore, in order to increase fall detection perfor-
mance, many researchers used multiple kinematic measures to
detect falls. In Wu (2000), for instance, a fall was detected if both
the vertical and horizontal trunk velocity exceeded 1 m/s. More
recently, Jacob et al. (2011) have used the gravitational force, the
angular velocity and the angular acceleration at lower back to
detect the occurrence of falls. In their model, falls were considered
to occur if the acceleration measures exceeded 2.73 g, angular
velocity measures exceeded 2.74 rad/s, and angular acceleration
measures were over 0.04 rad/s2 at the same time. In these studies,
‘AND’ logic was commonly used to combine various kinematic
measures when defining the ‘fall’ condition. In other words, a fall
was considered to occur only when the selected kinematic mea-
sures all satisfied the pre-defined criteria simultaneously. As a
result, miss detection has to be reported on a more frequent basis
(i.e. decreased sensitivity).

We presented a novel fall detection model based on the statis-
tical process control chart (Hu and Qu, 2014). This model was
superior to previous fall detection models mainly in two aspects.
First, the fall indicators in this fall detection model were selected
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based on experimental findings, which improved the validity of
this model. Second, this fall detection model was individual-spe-
cific, which can account for the variability of human motion pat-
terns. In Hu and Qu (2014), the performance of the proposed fall
detection model was examined separately for each selected kine-
matic measure. As more kinematic measures contain more infor-
mation regarding falling dynamics, we aimed to examine the
performance of our proposed fall detection model using a fall indi-
cator defined by a linear combination of kinematic measures in this
study. An optimization procedure was performed to specify the
combination of the selected kinematic measures associated with
the optimal fall detection performance.

2. Methods

2.1. The fall detection model

Based on the findings from Hu and Qu (2013), five kinematic
measures were selected as the fall indicator candidates for the fall
detection model. The fall detection model was developed based on
the statistical process control chart in three steps (Hu and Qu,
2014). Briefly, in step 1, the autocorrelation coefficient function
(ACF) was used to assess the autocorrelation in the fall indicator
time series. If the autocorrelation was not found, we directly went
to step 3 to construct the control chart using the original time ser-
ies of fall indicators. Otherwise, in step 2, an autoregressive inte-
grated moving average (ARIMA) model was used to eliminate the
autocorrelation by generating non-autocorrelated time series. In
step 3, the non-autocorrelated time series were used to specify
the control limits of a Shewhart individuals control chart which
was used for detecting the abnormal changes of body dynamics
due to falls. After the model construction, the model was used to
monitor the fall indicator in real time. If the fall indicator went
beyond either the upper or lower control limit, a fall was consid-
ered to be detected. Otherwise, the activity was classified to be a
non-fall activity. Details of the proposed fall detection model were
presented in Hu and Qu (2014).

2.2. Definition of the fall indicator

In Hu and Qu (2014), the highest sensitivity (i.e. 94.7%) and
highest specificity (i.e. 99.2%) were obtained by using the fall indi-
cators defined by trunk vertical velocity and shank frontal velocity,
respectively. Therefore, in this study, the fall indicator was defined
by a linear combination of the trunk vertical velocity and shank
frontal velocity as follows:

Fall indicator ¼ xTVVt þ 1� xð ÞSFVt ð1Þ

where TVVt represented the trunk vertical velocity, SFVt represented
the shank frontal velocity, and x was a weighting factor and within
the range of [0,1]. In order to specify the value of x that was asso-
ciated with the optimal fall detection performance, an optimization
procedure was performed whose objective function was to mini-
mize the sum of squared errors of the fall detection model. The
sum of squared errors was defined as follows:

sum of squared errors ¼ ðtype I errorÞ2 þ ðtype II errorÞ2 ð2Þ

where type I error = 1-specificity and type II error = 1-sensitivity. In
the optimization procedure, the trial and error method was used. In
particular, x was set at various values with an equal interval of 0.01
within its specified range (i.e. x = 0, 0.01, 0.02, 0.03,. . ., 0.98, 0.99,
and 1). Using the fall detection model developed in Hu and Qu
(2014), the sum of squared errors corresponding to each x value
was calculated. The optimal x was identified as that associated with
the minimum sum of squared errors.

2.3. Data selection

The data used for model development and evaluation were from
our earlier experiment (Hu and Qu, 2014). Sixty young participants
were involved in the experiment including 30 males and 30
females (Age: 24.2 ± 2.1 years; Height 169.1 ± 9.2 cm; Weight
58.5 ± 10.3 kg). In total, there were 233 slip trials and 240 normal
walking trials obtained from the experiment. Among the slip trials,
there were 120 successful balance recovery and 113 failed balance
recovery (i.e. falls). The experimental trials from each participant
were classified into two random subsets: training subset and test-
ing subset. The training subset for each participant included one
normal walking trial and one successful recovery trial and was
used to specify the individual-specific fall detection model as
described in Hu and Qu (2014). The rest experimental trials
belonged to the testing subset which was used to examine the effi-
cacy of the proposed fall detection model.

3. Results

Fig. 1 illustrated how the sensitivity, specificity and sum of
squared errors changed with the weighting factor x. The smallest
value of sum of squared errors = 0.00133 (sensitivity = 97.3% and
specificity = 97.5%) was found when the weighting factor x was
between 0.25 and 0.29. Besides, the highest sensitivity (97.3%)
and highest specificity (99.2%) were achieved when x = 0.25–0.29
and x = 0.84–1, respectively.

4. Discussion

In the earlier investigation (Hu and Qu, 2014) that used a single
kinematic measure to define the fall indicator, the highest sensitiv-
ity, highest specificity, and minimum value of sum of squared
errors were 94.7%, 99.2% and 0.00390, respectively. In this study,
the corresponding values we obtained were 97.3%, 99.2% and
0.00133 for sensitivity, specificity, and sum of squared errors,
respectively. Therefore, the fall detection model based on the sta-
tistical process control chart performed better when the fall indica-
tor was defined by a linear combination of kinematic measures.
This finding is reasonable since more kinematic measures could
better account for falling dynamics.

Some previous fall detection studies also used multiple kine-
matic measures to indicate the fall status (Nyan et al., 2008;
Jacob et al., 2011; Wu, 2000). However, these studies mainly used
‘AND’ logic to combine kinematic measures which would result in
decreased sensitivity. To overcome this problem, the fall indicator
as a linear combination of kinematic measures was proposed in
this study. The advantage of using the linear combination is that
it is the simplest format of combination that makes the analysis
and implementation easy. The improved fall detection perfor-
mance have supported that linear combination is a wise choice
to combine kinematic measures.

An optimization procedure was performed to specify the rela-
tive weightings of the selected kinematic measures. The trial and
error method, which is a widely accepted heuristic method, was
chosen in the optimization procedure because the optimization
problem in the present study was a highly non-linear problem that
can only be addressed by heuristic methods. In addition, the trial
and error method was chosen because it is less computationally
intensive compared to other heuristic methods such as genetic
algorithms and simulated annealing.

The optimal weighting factor x was found to be within a range,
not at a specific value. This is because of the limited amount of
experimental data (i.e. 240 normal walking trials and 233 slip trials
including 120 successful balance recovery and 113 falls) available
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