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a b s t r a c t

Multi-vehicle motorcycle crashes combine elements of design, behavior, and traffic. One challenge with
working with motorcycle data are the inherit difficulties associated with missing data – such as motor-
cycle-specific: vehicle miles traveled (VMT) and average daily traffic (ADT). To address the challenges of
the missing data, a random effects Bayesian negative binomial model is developed for the state of Ohio. In
this study, the random effect terms improve the general model by describing the spatial correlation with
fixed effects, the neighborhood criteria, and the uncorrelated heterogeneity for all the multi-vehicle
motorcycle crashes that occurred on the 32,289 state-maintained roadway segments in Ohio. Some
key findings from this study include regional data improves the goodness-of-fit, and further improve-
ment of the models may be gained through a distance-based neighborhood specification of conditional
autoregressive (CAR). In addition to the model improvement using the random effect terms, key variables
such as smaller lane and shoulder widths, increases in the horizontal degree of curvature and increases in
the maximum vertical grade will increase the prediction of a crash.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Motorcycle crashes are known to compose a disproportionately
high amount of the overall vehicle fatalities in the United States.
Fatalities on motorcycles represented 4462 deaths of the 30,797
total fatal crashes in the United States in 2009 (FARS, 2012). In that
year, when considering the number of fatalities per 100 million
VMT (Vehicle Miles Traveled), the motorcycle fatality rate was over
18 times that of passenger car crashes, which was the second high-
est crash rate for a specific vehicle class (FARS, 2012).

Nationally, 10.1% of the vehicle crash fatalities were motorcycle
crashes in 2009 (FARS, 2012). Despite the limited riding season in
Ohio due to the weather, the amount of motorcycle involvement in
fatalities in the same year was even higher at 16.3%, or 166 fatali-
ties (FARS, 2012). In more recent years, the number of fatal crashes
has decreased slightly due to a proactive approach, with 164 fatal
crashes in 2010. At the same time, the number of motorcycle
crashes (all severities) in Ohio increased from 4165 in 2009 to
4381 in 2010 (ODPS, 2012).

A motorcycle crash, as any other vehicle crash, is a complex
event with many influential factors and characteristics. Since the

mechanisms that lead to each crash may be dramatically different,
it is natural to assume that the factors that are behind the two dis-
tinct crash types are different as well (Haque et al., 2012; Geedipal-
ly and Lord, 2010; Jonsson et al., 2007; Ivan, 2004; Savolainen and
Mannering, 2007; Yau, 2004). Therefore, it is reasonable to sepa-
rate single and multi-vehicle crashes.

Two common approaches to model motorcycle crashes are dis-
crete outcome and negative binomial models (see Savolainen et al.,
2011; Lord and Mannering, 2010, for a review of these models in
highway safety research). Some common findings from discrete
outcome models show that injury severity is significantly affected
by factors such as helmet use, speeding, alcohol use, and operator
age (Chang and Yeh, 2006; Savolainen and Mannering, 2007; Ha-
que et al., 2009). While discrete outcome models perform well in
estimating the impact of behavioral and crash characteristics on
the type of crash that occurs, negative binomial models are more
commonly used to estimate or predict the number of crashes based
on information such as geometric, demographic, or infrastructural
characteristics (Chin and Quddus, 2003; Haque et al., 2010; Harnen
et al., 2003; Houston, 2007; Schneider et al., 2010).

More recently, negative binomial models have been improved
by introducing random effects terms, which offer the prospect of
including data and relationships that may be difficult to apply in
a standard model configuration. These more advanced models
are often referred to as multi-level models, as they introduce data
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on multiple spatial, temporal, or conceptual levels. Some examples
include multi-level random effects that estimate the impact of
crashes occurring in the same intersection (Kim et al., 2007), corri-
dor (Guo et al., 2010), region (Yannis et al., 2007), or year. In each
case, the multi-level model improves both the model fit and the
interpretation of the findings, showing which intersections or re-
gions are more prone to crash occurrence than others. Not only
can random effects be used with assigned groups of similar crashes
(such as county or time) as shown previously, but they may also be
used by comparing the crash frequency of nearby segments or re-
gions (Eksler and Lassarre, 2008; Mitra, 2009; Quddus, 2008; Wang
et al., 2009). The researcher may choose from a variety of methods
to define which segments or regions are considered the neighbor of
another, such as contiguity or a fixed distance. In this case, condi-
tional autoregressive (CAR) random effects are shown to reduce
the model error by adding the prior knowledge of neighboring re-
gions and segments, leading to better parameter estimates. Addi-
tionally, CAR random effects are also frequently paired with an
uncorrelated random effects term, which quantifies the model er-
ror that is not related to the nearby regions or segments, but rather
unknown or unmeasured influences (Aguero-Valverde and Jovanis,
2008; Eksler and Lassarre, 2008; Guo et al., 2010; Mitra, 2009).

Ultimately, random effect terms may be used to reduce model
error that is caused by unavailable or unrecorded data such as mo-
torcycle specific vehicle miles traveled or ADT. The models within
this paper will utilize the previous demonstration of the random
effect terms used in other areas of traffic safety and apply these
statistical methodologies directly to motorcycle specific models.
This application will improve the key parameters that influence
multi-vehicle motorcycle crashes. While the use of random effects
in negative binomial models is relatively new in the field of safety,
this application is new to motorcycle specific crashes.

2. Materials and methods

Three datasets (ODOT, 2011; ODPS, 2012; US Census Bureau,
2011) were used in this multi-level study. The first dataset is pro-
vided by the Ohio Department of Transportation (ODOT) and is com-
posed of 32,289 interstate, US route, and state route segments. The
segments are predominantly classified as principal and minor arte-
rial routes. This dataset, shown in Table 1, includes the following:
pavement type, lane width, shoulder width, number of lanes, med-
ian presence, horizontal and vertical curve related statistics, the
overall vehicle ADT, and the length of the segment. Secondary infor-
mation may be extracted from the initial dataset to calculate the
number of horizontal curves per segment, horizontal curves per
mile, maximum degree of curve, and percent of the segment that
is a horizontal curve. Similarly, the number of vertical curves, verti-
cal curves per mile, maximum grade, and the percent of the segment
that is a vertical curve are extracted from the vertical curve data. In
addition to the roadway segments, township information from the
ODOT dataset, including the number of lane miles, area of the town-
ship, and the urban status of the township, is used to capture infor-
mation about the 1459 townships in Ohio. Of the 1459 townships,
940 are considered urban townships in this study. A township is
designated as urban if an incorporated city, based on the city bound-
aries provided by ODOT, is located inside the region (ODOT, 2011).
All the variables listed above are considered as fixed effects param-
eters with the exception of the ADT and segment length, which are
entered into the model as an offset as shown in order to measure
exposure as a rate (see Miaou and Song, 2005 or Lord et al., 2005):

eh ¼
ðADTh � LhÞ

106 ð1Þ

where ADTh is the ADT of segment h, Lh is the segment length, and
eh is the value of the offset for the segment. The offset accounts for

the exposure of each segment to multi-vehicle motorcycle crashes.
Although the data in this study are missing specific measures of
motorcycle travel, these two means of exposure along with each
random effects term reduce the error due to the lack of available
data.

US Census data (US Census Bureau, 2011) were used to include
demographic information that described the different regions of
Ohio in a manner similar to Aguero-Valverde and Jovanis (2006).
Knowledge about the household demographics – such as the per-
cent of residents over age 65, percentage of residents under the
poverty level, and the mean travel time to work – was included
in the model. In addition to demographic information, the county
population, number of motorcycle endorsements (motorcycle li-
censes), and number of registered motorcycles are used as mea-
sures of motorcycle and motor vehicle traffic and are compiled at
a regional level.

The number of multi-vehicle motorcycle crashes that occur be-
tween 2006 and the summer of 2011 on each segment is deter-
mined by combining Ohio crash data as reported by the Ohio
Department of Public Safety (ODPS) with the ODOT geographic
locations of each roadway segment (ODPS, 2012; ODOT, 2011). A
total of 3804 non-intersection related multi-vehicle motorcycle
crashes are found to have occurred on state-maintained roadways
from 2006 through the summer of 2011; this total includes 68 fatal
crashes and 1163 injury crashes. Geographic coordinates, which are
used to identify the segment on which each crash occurred, are
available for 3379 crashes (ODPS, 2012). Segments with no geo-
graphic coordinates and those having unrealistic characteristics
(such as excessive lane widths) are removed, and the remaining
3119 multi-vehicle motorcycle crashes are considered in this study.

3. Theory and calculation

Negative binomial modeling with Bayesian inference is com-
monly used to predict crashes. Within this practice, Bayesian infer-
ence differs from traditional statistics in that the parameters are
estimated using prior knowledge, as shown in Bayes Theorem:

pðhjyÞ ¼ pðyjhÞpðhÞ
pðyÞ ð2Þ

where p(h|y) represents the posterior density, p(y|h) denotes the
model likelihood, p(h) is the known background information, and
p(y) represents the unconditional density of the data. Guo et al.
(2010) and Congdon (2010) present a detailed description of Bayes’
theorem, and the application of Bayesian negative binomial models
may be found in examples such as Haque et al. (2010), Mitra (2009),
Noland and Quddus (2004) or Quddus (2008).

Within the last few years, researchers such as Aguero-Valverde
and Jovanis (2010) and Wang et al. (2009) have been introducing
random effects into models so as to include information that
may be either unavailable or may be difficult to express in the form
of fixed effects. This form of modeling is particularly advantageous
in studies such as this, since motorcycle-specific ADT and VMT are
difficult to measure. In order to measure the impact of the random
effects, three types of Bayesian negative binomial models are con-
sidered in this study:

� Uncorrelated heterogeneity model (UH model).
� County and township level random effects model (CT

model).
� Spatially correlated random effects models (SC models).

In the UH model, only fixed effects and one random effects term
for uncorrelated heterogeneity is specified. In the CT and SC
models, full Bayesian negative binomial models are specified with
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