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We discuss progress in obtaining explicit equations for the capillary force between nano and micron sized solid
spheres. Early approaches to this two-century old problem adopted approximations to the geometry. With the
toroidal approximation, the meridian profile is approximated by an arc, and the approach leads to the capillary
force being dependent on the location at which the force is evaluated. The Derjaguin approximation further as-
sumes that the meridian radius is orders of magnitude smaller than the azimuth radius. An explicit expression
for the capillary force is obtained, but the equation is limited to sufficiently small liquid volumes and separation
distances. Significant progress has been made in recent years in using numerical solutions to derive analytical
expressions for capillary bridges. Early numerical investigation established that the maximum separation for
stable capillary bridges before rupture scales to the cubic root of the liquid volume. We report new progress in
using numerical solutions to obtain more accurate and more general closed-form expressions for capillary
bridges. Simple explicit algebraic equations have been observed to fit the numerical results well, leading to a
closed-form solution applicable to capillary bridges between equal and unequal spheres and with zero or finite
solid–liquid contact angles. The newly derived closed-form equation is more accurate and reduces to the
Derjaguin equation when the liquid volume (or half-filling angle) and separation distance are both sufficiently
small.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

When a quantity of liquid is introduced at the contact between two
adjacent micro and nano sized solid particles, a capillary bridge, a form
of meniscus, will be formed. Capillary bridges are ubiquitous in nature
and engineering systems. They can exist at length scales as low as a
few nanometres [1]. For granular materials, capillary bridges are re-
sponsible for a number of phenomena, including caking, agglomeration,
ageing and mechanical strength [2–5]. In nature, the remarkable
switchable adhesion of gecko lizards and insect species is also believed
to originate from the capillary force [6,7]. Indeed, capillary forces are of
importance in many applications such as nature-inspired switchable
adhesive pads [8], surface cleaning [9,10], particle-stabilised foams
and emulsions [11–13], capillary suspensions [14,15], fibre wetting
[16] as well as the preparation of graphene films [17] and so on.

The capillary bridge has been a scientific topic of research for more
than two centuries. The subject attracted interest from various back-
grounds. The mathematical foundation of capillary action was laid by
Thomas Young and Pierre Simon Marguis de Laplace at the beginning
of the 18th century. The so-called Laplace–Young equation relates the
capillary pressure difference across an interface of two static fluids to
the shape and surface tension of the interface. Capillary bridges be-
tween solid spheres normally have the azimuth radius curved inwards
and the meridian radius curved outwards. This is the conventional liq-
uid bridge shape, sometimes loosely referred to as “toroidal”. Capillary
bridges between solid spheres can also have the two principal radii
both curved inwards. This is the case when the solid–liquid contact
angle is greater than π/2 and sometimes referred to as “convex”, as in
the case of a liquid drop [18]. In this case, the most favourable shape
of the bridge is as part of a sphere as this is the most stable condition
of minimised interfacial energy. The capillary force under static condi-
tion is essentially zero. Another special case is the cylindrical bridge
that also has a simple analytical solution for the mean curvature and
the capillary force is πrγ. This paper considers the exact forms of the
conventional “toroidal” bridges, which are difficult to solve analytically.

Early theoretical studies considered approximations to the geome-
try. Fisher [19] approximated the capillary bridge as toroid, the so-
called toroidal approximation. The approach leads to a capillary force
which is dependent on the location at which the force is evaluated.
Derjaguin derived an explicit analytical solution for the capillary force
in which the radius of the meridian profile of the bridge is considered
to be orders of magnitude smaller than the radius of the neck [20].
Recently, attempts were also reported to redevelop the Derjaguin equa-
tion, e.g. [21]. Both the toroidal and Derjaguin solutions are approxima-
tions to the geometry of the bridge and the capillary force. They are
accurate only for liquid bridges of sufficiently small liquid volumes
and separation distances [22,23]. Under more general conditions, both
approaches lead to significant errors in the capillary force.

Experimental studies on capillary bridge forces were reported by
MacFarlane and Tabor [24], Mason and Clark [25], and Erle et al [26].
Recent advances in AFM enabled more accurate measurement of the
capillary force [22,27]. Comparisons of the measured capillary force
with theoreticalmodels confirmed the limitation of the Derjaguin equa-
tion and toroidal approximation [22,23].

Numerical studies were also reported on capillary bridges [22,23,
28]. By solving the Laplace–Young equation numerically, it was ob-
served that the maximum stable separation distance for capillary brid-
ges between solid spheres scales to the cubic root of the liquid volume
[23]. Beyond this critical separation distance, capillary bridges are not
stable. This scaling relationship was found to apply for a wide range of
conditions of solid–liquid contact angle, unequal sized spheres and flat
surfaces [22]. Based on the numerical solution, Willett et al [22] also
fitted an expression for calculating the capillary force as functions of
liquid volume, contact angle and separation distance.

Although the subject of capillary bridges has attracted interest from
many directions, it has remained difficult to calculate the capillary force

under general conditions. Here, we report new progress in obtaining
explicit analytical equations in this two-century old problem. We re-
examine the numerical solution for capillary bridges and obtain, for
the first time, simple fitted analytical expressions for the force, half-
filling angle and radius of the neck of capillary bridges. First, by solving
the Laplace–Young equation at zero separation numerically, we observe
simple power-law equations for calculating the volume, capillary force
and radius of the neck as a function of the half-filling angle. Second,
we examine the numerical solution for capillary bridge geometry with
increasing separation distance while keeping the volume of liquid con-
stant. Simple analytical relationships are further observed for the force,
the radius of the neck and half-filling angle as a function of the separa-
tion distance. Third, we examine capillary bridges between unequal
sized spheres of finite solid–liquid contact angles. We show that for
unequal sized spheres, the capillary force can be calculated from the ex-
pression for equal spheres of the same liquid volume, made dimension-
less to the harmonic radius. Increasing the size of the large sphere
results in an increase of the capillary force on the small sphere. For
non-zero contact angle with solid spheres, a more accurate explicit ex-
pression for the capillary force at zero separation is obtained. At finite
separation distance, the decrease of the capillary force for a finite solid
liquid contact angle followed essentially the same trend for zero solid
liquid contact angle. Finally, we present an explicit closed-form equa-
tion for the capillary force between equal and unequal sized spheres
and for zero and finite solid–liquid contact angles. The equation is
more accurate than the Derjaguin approximation and reduces to the
Derjaguin equation when the half-filling angle and separation distance
are both sufficiently small.

2. Problem definition

2.1. Laplace–Young equation

We consider the general problem of a capillary bridge between two
unequal spheres with a finite solid liquid contact angle as shown in
Fig. 1a. As usual, we introduce the harmonic radius

2
r12

¼ 1
r1

þ 1
r2

ð1Þ

where r1 and r2 are the radii of the two spheres. We generally consider
r1 ≤ r2. In particular, when r2→∞, the capillary bridge between a sphere
and a flat surface is recovered.

The profile of the capillary bridge is described by the Laplace–Young
equation, which relates the mean curvature of the bridge to the surface
tension and pressure difference across the liquid-air interface. The
equation can be written in the following dimensionless form

2H ¼
€Y

1þ Y
� 2

� �3=2 −
1

Y 1þ Y
� 2

� �1=2 ð2Þ

whereH ¼ r12Δp
�
2γ is the dimensionless mean curvature of the capillary

bridge, Δp is the pressure difference across the liquid–air interface, and
γ is the surface tension. Y(X) denotes the azimuth radius or the axi-
symmetrical profile of the capillary bridge in dimensionless form, i.e.
X = x/r12 and Y = y/r12.

The boundary condition for the equation can be formulated at the
solid–liquid contact lines with the two spheres as follows

Yc1 ¼ R1 sinφ1; Y
�

c1 ¼ − cot φ1 þ θð Þ at X1 ¼ 0 ð3Þ
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