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Uphill airflow transport of drops on superhydrophobic inclines

Dwayne Chung Kim Chung a, Mayur Katariya a, So Hung Huynh a, Brandon Huey-Ping Cheong a, OiWah Liew b,
Murat Muradoglu a, Tuck Wah Ng a

a Laboratory for Optics & Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton VIC3800, Australia
b Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Centre for Translational Medicine, 14 Medical Drive,
Singapore 117599, Singapore

a b s t r a c ta r t i c l e i n f o

Article history:
Received 1 April 2015
Received in revised form 15 June 2015
Accepted 16 June 2015
Available online 5 August 2015

Keywords:
Superhydrophobic
Droplet
Liquid bridge
Airflow
Pinching

The ability of uphill droplet transport on a superhydrophobic surface incline using airflowwasdemonstrated. An-
alytical equations were found to describe the droplet volume at detachment at various inclination angles for the
range of physical parameters applied. A pinching off behavior with necking prior to detachment was observed in
which a constant time to rupture of 3.2 × 10−2 s from a neck thickness of 1 × 10−3mwas found regardless of the
inclination angle used. The approach provided rapid uphill translation of 33 droplets per second and incurs lim-
ited aerosolization due to the small forces in action.

© 2015 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

The ability of uphill droplet transport on a superhydrophobic surface
incline using airflow was demonstrated. Analytical equations were
found to describe the droplet volume at detachment at various inclina-
tion angles for the range of physical parameters applied. A pinching off
behavior with necking prior to detachment was observed in which a
constant time to rupture of 3.2 × 10−2 s from a neck thickness of
1 × 10−3 m was found regardless of the inclination angle used. The ap-
proach provided rapid uphill translation of 33 droplets per second and
incurs limited aerosolization due to the small forces in action.

The capacity to transport liquid continuously uphill in a closed chan-
nel or pipe may seem rather unremarkable when one considers that a
simple pump is able to do this. Yet, the ability to transfer individual
droplets uphill has proven to be of great interest to the scientific com-
munity. This is increasingly significant due to the proliferation of open
and discrete microfluidic systems [1,2]. The basis to transport droplets
uphill was theoretically mooted almost 40 years ago [3] and then real-
ized experimentally just over 20 years ago [4]. The modification of the
wetting characteristics of surfaces in various ways provides an obvious
approach to accomplish uphill droplet transport [4,5]. Nevertheless,
the lateral vibration of surfaces [6], heating surfaces to attain the
Leidenfrost effect [7], and illumination of laser beams on the substrate
[8] or droplet [9] are among other methods that have also been
advanced.

When droplets are placed on flat superhydrophobic (SH) surfaces
they are able to assume an almost spherical shape when gravity is

negligible and when Cassie wetting state is dominant [10]. These sur-
faces can now be fabricated using various ways [11,12]. They generally
offer ultra-low friction which can present containment problems in ap-
plications unless suitable constraints are used [13,14]. Yet, the de-facto
merit of using such surfaces lies with the low levels of sample loss due
to the highly non-wetting characteristic offered, which makes it attrac-
tive for biochemical applications [13–16].

It has been recently shown thatwhen liquid is delivered continuous-
ly through an orifice to a SH incline, the increasing weight of the drop
will cause the rear contact angle to reduce to the extent where the
drop eventually pinches off with the contact line to traverse over the or-
ifice [17]. On making contact with the solid, however, a predominant
Cassie wetting state is restored whichwill quickly allow the drop to de-
tach and travel down the surface. This presents a viablemeans to rapidly
generate droplets as opposed to othermethodswhich can arguably pro-
vide more precise volumetric control [14]. In this work, we explore the
use of airflow to engender the uphill transport of droplets forming from
water delivered continuously through an orifice onto the inclined SH
surface.

A T-shaped setup was fabricated (see Fig. 1) to conduct the experi-
ments. As air was delivered along a straight passage from one opening
to another diametrically opposite opening, it created a low pressure re-
gion at the intersection with the orthogonal passage, allowing air to be
drawn in through the third opening. In the experiments, the airflow de-
livered was unchanged, such that the air velocity at the point of drop
formation, measured using a pitot tube and digital manometer
(Digitron, 2002), was kept at 24.9 m/s. The SH substrate was a copper
plate with a small hole of 1 mm diameter drilled through, polished
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earlier to remove scratches using silicon carbide electro-coated water-
proof abrasive paper (KMCA, WET/DRY S85 P600). Prior to use, it was
first cleaned using absolute ethanol, allowed to air dry, and then im-
mersed in a 24.75 mM aqueous solution of silver nitrate (AgNO3) for
1 min to form the micro- and nanostructures. After this, it was rinsed
with copious amounts of distilled water followed by absolute ethanol
before being allowed to air dry. Once dried, it was immersed in a
1 mM solution of the surface modifier CF3(CF2)7CH2CH2SH in absolute
ethanol (ethanol with low water content) for 5 min. After removal, it
was again rinsed with copious amounts of distilled water, followed by
absolute ethanol, and then air dried. This surface was characterized
using a SEM (Helios NanoLab) and the contact angle behavior interro-
gated with video recording of a 10 μL drop displaced using a
0.7176 mm outer diameter tip moving laterally on the DSA100S
(Kruss). Distilled water was delivered via a flexible tube and adaptor lo-
cated at the bottom of the plate through a programmable peristaltic
pump (NE9000 New Era). The liquid flowrate was kept constant at
0.1 mL/s to avoid the two body separation regime observed previously
[17]. Videos of the drops forming on the SH surface were recorded
using a high-speed camera (Fastec) at 250 frames per second.

A sample SEM image of the SH surface is given in Fig. 2(a). It can be
seen that dendritic and granular structures are formed that allow a pre-
dominant Cassie wetting state to form. Fig. 2(b) furnishes a side view of
the drop as it exhibits advancing and receding contact angles of

158.5° ± 0.1° and 156.9°±0.18° respectively (average and standard de-
viation taken from 260 images of the same drop displaced).

We first consider the case of drop formation and transport in the ab-
sence of airflow (see Fig. 3(a)–(c)). Due to continual liquid filling
through the orifice, a liquid bridge first develops, fromwhich it gradual-
ly constricts before rupturing. This makes it different from the case of
tilting the surface for a drop without infilling where the advancing
and receding contact angle hysteresis dictates its movement from the
surface. Any drop movement in the lateral direction under the action
of a lateral force coinciding with the surface being inclined at the limit-
ing sliding angle will cause non-adherence to Amonton's law of friction
[18]. Here, the liquid flowrate into the drop will vary the rupture resis-
tance of the liquid bridge. Since the flowrate was kept unchanged, it is
possible then to assume that a constant adhesion force Fadh was in
operation, and that the ability of the drop to be just detached from the
surface is dictated by the balance of forces from gravity at equilibrium,
such that

V ¼ Fadh
ρwg sinθ

¼ k1
1

sinθ
ð1Þ

where V= volume, ρw = the density of water, g= gravitational accel-
eration, and θ = angle of inclination. The experimental trend of V
against θ is evident in Fig. 4 (scatter data), wherein a best fit process
(solid line) yielded k1 = 0.018 × 10−3 m3. Based on this, we have
Fadh=1.76× 10−4 N. This value ismuch larger than the adhesion forces
of water drops on the same type SH surface previously found ~O(10−9)
N [19], but is reasonable due to a different mechanism of attachment
here (i.e. through a liquid bridge).

If we consider the case of drop formation and transport with airflow
(see Fig. 3(d)–(f)), a somewhat similar case of a liquid bridge develop-
ing first, from which it gradually constricts before rupturing, can be
seen. In being able to cause the droplet to detach and move uphill, the
drag force developed has to overcome both the gravitational force and
adhesion force of the drop to the surface. The drag force scales according
to the cross sectional areaA of the drop ifwe assume the airflowvelocity
and drag coefficient (determined by its shapewhile interactingwith the
airflow) to be relatively unchanged. By conveniently equating to a
sphere, it is possible to deduce that A = 4.836 V2/3. If we assume that
the adhesion force to be unchanged inmagnitude from the casewithout
airflow but acting in the opposite direction, the force balance equation
can be stated as

4:836
1
2
ρau

2Cd

� �
V2=3 � ρwgVsinθ� Fadh ¼ 0 ð2Þ

Fig. 1. The setup devised to obtain images of droplet transport. Water from a peristaltic
pump was delivered through a pipe to an injection nozzle located at the bottom of a SH
surface. This assembly is attached to the T-shaped setup, where air input into one arm
to exit from the arm directly opposite to it, creates a low pressure region at the junction
with the third arm. The higher (ambient) pressure at the inlet of the third arm then causes
an airflow past the drop developing on the SH surface. Varied inclination measurements
were obtained by tilting the entire setup. Imageswere obtained by placing the light source
and camera at opposite sides of the transparent observation windows.

Fig. 2. A typical SEM image (a) of the superhydrophobic surface which reveals dendritic and granular structures. When a droplet is displaced statically on this surface using a tip (b), ad-
vancing and receding contact angles of 158.5° ± 0.1° and 156.9° ± 0.18° respectively were found.
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