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a b s t r a c t

Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a
heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated
annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of
annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific
heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a
crucial role in the outcome of the search. Nevertheless, they have received comparably little attention,
for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during
searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in
which melting temperatures differ between materials, we observe distinct specific heat profiles for each
input file. We propose this reflects differences in the search landscape and can serve as a measure for
problem difficulty and for suitability of the algorithm’s parameters. We discuss application in algorithmic
optimisation and as a diagnostic to assess parameterisation before computationally costly, large
phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under
maximum parsimony, it is plausible that our results are more widely applicable to optimisation proce-
dures in science and industry.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Global optimisation is an important step in modern phylogeny
reconstruction. To identify the most plausible phylogenetic tree
under a given criterion, one has to find the tree with optimal fit
amongst all conceivable tree topologies. The maximum parsimony
criterion (MP) requires optimisation of tree length (Fitch, 1971)
and maximum likelihood (ML), as the name suggests, requires
optimisation of a likelihood function (Felsenstein, 1981). However,
MP is an NP-Complete problem (Foulds and Graham, 1982) and ML
phylogeny reconstruction is NP-Hard (Roch, 2006). It follows that
in order to be sure of obtaining the optimal tree, one would
theoretically need to examine all feasible topologies; a number
which grows factorially with the number of taxonomic units in
the analysis (Felsenstein, 1978a). Even for studies of moderate size,
this number exceeds the number of atoms in the universe and

makes an exhaustive search infeasible. Despite reductions in com-
plexity achieved by the branch-and-bound algorithm (Hendy and
Penny, 1982) and revolutions in computing power, it is likely that
run time for exact optimisation will remain astronomical.

As a workaround, heuristic optimisation algorithms are used.
Instead of setting out to determine all globally optimal solutions,
these methods use shortcuts to aim to find optima approximately.
As such, heuristics allow one to obtain very good solutions in prac-
tical time scales when exact optimisation is too costly. This is also
true in phylogeny reconstruction. Heuristic searches underlie the
majority of today’s MP and ML phylogeny reconstruction pro-
grams, for example PAUP, TNT, PhyML and RAxML (Swofford,
2003; Goloboff et al., 2008; Guindon et al., 2010; Stamatakis,
2014). However, in emplyoing heuristic searches we fundamen-
tally lose the guarantee of global optimality. Using a heuristic
search it remains possible that even if the true phylogeny was
hypothetically inferable from an alignment, one might not be able
to retrieve it – simply because the algorithm did not happen to
search a specific area of the search space. This problem is particu-
larly pressing for analyses involving many taxonomic units.

The increasing ease and decreasing costs of DNA sequencing
allow opportunities for very large phylogeny reconstructions. At
the same time, phylogeny is being applied to even more areas of
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the life sciences. Applications include, for example, ancestral state
reconstruction (Lutzoni et al., 2001), assessing biodiversity (Flynn,
2011), predicting gene function (Eisen, 1998; Barker et al., 2007)
and investigations of cancer and pathogen evolution, with implica-
tions for treatment (Gerlinger et al., 2012; Köser et al., 2012). Such
analyses build on the solution of large and complex optimisation
problems, making further development of heuristic searches in
phylogeny increasingly urgent.

An important step towards more efficient algorithms is a better
understanding of the nature of heuristic searches. In the current
paper we present an analysis of the search behaviour of the simu-
lated annealing heuristic. Simulated annealing, available in the
phylogeny reconstruction packages LVB, MetaPIGA, SAMPARS and
RAxML (Barker, 2004; Helaers and Milinkovitch, 2010; Richer
et al., 2013; Stamatakis, 2014), is inspired by the physical processes
occurring during the crystallisation of a liquid by gentle cooling
(Kirkpatrick et al., 1983; Cerny, 1985). Convergence to the final
solution is controlled by a parameter mimicking temperature in a
physical system, with certain ranges of this parameter, called
phase transitions, being particularly important to the search
(Kirkpatrick et al., 1983; Cai and Ma, 2010; Hasegawa, 2012). In
the following paper, we investigate the nature and role of these
phase transitions during simulated annealing searches under the
MP criterion. We identify the phase transitions for 34 real world
phylogeny problems. We find that properties of phase transitions
are repeatable for the same analysis and input and vary across dif-
ferent inputs, but in all cases correspond to the onset of effective
resolution of the tree structure. Subsequently, we discuss how
knowledge of the phase transition can help advance our under-
standing of the functioning of simulated annealing. We hypothe-
sise phase transitions can serve as a useful diagnostic for finding
suitable parameterisations for the search and be a stepping stone
for future algorithmic improvements. Whilst in the current study
we focus on phylogeny reconstruction under MP, conceptual links
between MP and ML (see ‘Maximum Parsimony’, below) and the
general nature of the simulated annealing algorithm make it plau-
sible that our results are relevant for other areas of phylogeny
reconstruction and beyond.

1.1. Maximum parsimony

For evolution of discrete traits on a given tree topology, the
minimum number of changes consistent with the observed charac-
ters is known as tree length. Maximum parsimony seeks to find the
topology of lowest length for the data matrix at hand.

Fitch (1971) provides a rapid, dynamic programming method to
calculate the length for a given tree topology.

Because of its simplicity the most parsimonious tree problem
provides a good model for studying global optimisation in phy-
logeny reconstruction and was therefore the chosen focus of this
study. Calculations are significantly quicker than for the ML case
and one avoids complications arising from needing to select appro-
priate models and parameters for the data at hand, which might
confound the interpretation. This allows one to gain a fundamental
understanding of the optimisation algorithm which in the future
can then be extended to more complex optimality criteria.

Nevertheless, our immediate results are of general interest to
the phylogeny community. Although MP is usually regarded as a
distinct method, the MP tree is also the ML tree, at least under a
constrained ‘no common mechanism’ model (Tuffley and Steel,
1997; Steel and Penny, 2000; see also Cavalli-Sforza and
Edwards, 1967, pp. 239–240). For the model implied by MP the
number of parameters increases with the amount of data, leading
to statistical inconsistency (Felsenstein, 1978b; Yang, 2006, pp.
198–204). Simulation studies suggest the biological accuracy of
MP is lower than that of statistically consistent ML approaches

(e.g. Huelsenbeck, 1995). But even where one desires statistical
consistency, the MP tree may still be useful as an initial tree, for
further refinement by ML whose evaluation function is more
time-consuming to calculate. This approach combines the speed
of calculation of tree length (MP) for the initial part of the search,
with a consistent approach to finding the final result (ML). This is
an option in, for example, PhyML (Guindon et al., 2010).

Tree length varies with the input data, as well as with the opti-
mality of the tree for those data. For greater comparability across
different input files we used the tree consistency index (CI), with
a theoretical range of 0–1 (Kluge and Farris, 1969), which seeks
to normalise tree length and improve comparability. CI provides
a measure of the amount of homoplasy on the proposed tree. For
a given data matrix, a higher consistency index indicates reduced
homoplasy, hence a shorter tree. Tree CI is given by:

CI ¼ K
Tree length

; ð1Þ

where K is the sum of the minimum number of changes for each
column in the multiple alignment individually (without reference
to any tree structure). As such, K is a theoretical minimum of the
number of mutations that has to have occurred to produce the given
alignment from a single ancestor sequence. To cast the problem as a
minimisation, which is more typical, we seek trees of minimum
homoplasy index (HI), where HI = 1 – CI (Swofford, 1993).

1.2. Simulated annealing

The simulated annealing algorithm was independently devel-
oped by Kirkpatrick et al. (1983) and Cerny (1985). It is inspired
by the processes which occur during the cooling of physical
systems and is a simple but powerful optimisation technique. If a
liquid is cooled slowly, the atoms anneal to form a crystal structure
that minimises their energy. Since the particles in the liquid are in
continuous motion at each instance they go through a plethora of
positions and arrangements, some of which will be energetically
more favourable than others. When cooling is applied and the sys-
tem is given sufficient time at each temperature, the distribution of
states visited will shift towards – and finally become – the very low
energy crystalline state (van Laarhoven and Aarts, 1988).

Simulated annealing mimics this process: in the same way that
the physical system seeks the state of minimal energy, it seeks the
solution of minimal cost. The algorithm will start with an initial,
often randomly generated solution X and perturb it according to
some neighbourhood function N, to propose an updated solution
X0. Similarly to how particles will always adopt a state that is an
improvement over the current one, the algorithmwill always move
to X0 if it has lower cost. However, also if X0 has higher cost, in
accordance with the physical analogy it will be occasionally
accepted with probability:

Pacc ¼ expð�DH=TÞ; ð2Þ
where DH is the change in cost and T is a control parameter playing
the role of temperature. The algorithm will perform a certain
number of such moves to allow the system to equilibrate. Then
the temperature T is decreased according to a decrement rule
known as the cooling schedule. The cooling schedule is often chosen
as a geometric law of the form: Tn+1 = a Tn, 0 < a < 1 (e.g. Barker,
2004; Kirkpatrick et al., 1983). If a certain number of temperature
decrements fails to bring about further improvements, the system
is considered frozen and the search is terminated. Despite its rela-
tive simplicity, simulated annealing yields high quality solutions
for a wide range of optimisation problems (e.g. van Laarhoven
and Aarts, 1988; Ingber, 1993; Lindorff-Larsen et al., 2005; Alavi
and Gandomi, 2011; Kolish and Dahlmann, 2015), including
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