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a  b  s  t  r  a  c  t

J-potential  belongs  to  the  group  of  novel  thermodynamic  potentials  for arbitrarily  loaded  solids.  The
article  considers  two  modified  forms  of  J-potential  especially  convenient  for surface  science.  Definitions
are given  and  fundamental  equations  are  derived  for bulk  phases,  interfaces,  and  interfacial  lines. The
application  of  J-potential  is  illustrated  by deriving  the  Neumann  and  Gibbs  equations  for  a  number  of
interfaces  meeting  at  a  line,  and  the  classical  Young  equation.
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1. Introduction

The necessity of introducing new thermodynamic potentials
appears in the thermodynamics of solid or mixed systems subjected
to complex external mechanical forces when ordinary free energy
and Gibbs energy cannot serve as potentials, i.e. do not produce
work. Indeed, using, for example, free energy as a thermodynamic
potential requires invariability of the system boundaries, but this
condition cannot be fulfilled for a loaded solid because of strain.
Classical Gibbs energy is better in that respect and can serve as
a thermodynamic potential, but only in the case when the exter-
nal force is a uniform outer pressure (for a capillary system with
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phases of different pressures, Gibbs energy should be defined with
respect to one chosen pressure to be under the control, which is
typically outer pressure). The case of arbitrary loading requires a
more general potential corresponding to a given constant loading.

The novel-for-chemical-thermodynamics J-potential is defined
as [1]

J ≡  ̋ −
∮

(A)

(P · u)dA (1)

where  ̋ is grand thermodynamic potential, P is an external force
(stress) per unit area of the system surface as a function of location
on the surface (A), u is the local vector of the surface displace-
ment, and A is the surface area; the integration is carried out over
the whole surface of the system. Naturally, a complex external
force bears a complex internal state of a system characterizing by
a certain field of the stress tensor Ê(x, y, z) in each solid phase.
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Mathematically, the integration over the surface in Eq. (1) can be
transformed into integration over the system volume to give∮

(A)

(P · u) dA =
∫ ∫ ∫

(V)

(Ê : ê) dxdydz,

where ê is the strain tensor, and the colon symbolizes the biscalar
product of tensors. We  now see that Eq. (1) rigorously accounts
for the tensorial mechanical state of a system. It its turn, tensorial
stress induces a tensorial character of the chemical potential of an
immobile species of a solid (forming the solid lattice). The detailed
formulation of the thermodynamics of solids and solid surfaces in
terms of stress and chemical potential tensors can be found in the
author’s reviews [2,3].

The quantity  ̋ in Eq. (1) is read as the grand thermodynamic
potential generalized for solids with account of chemical potentials
of both mobile and immobile (forming the solid lattice) species in
the form [4]

 ̋ ≡ F −
∑

i

�iNi − �ˇ
j

Nj = F −
∑

i

�iNi − �˛
j(nn)Nj (2)

where F is free energy, � is chemical potential, N is the number
of molecules, the subscript i and j refer to mobile and immobile
species, respectively, the superscript  ̨ refers to a solid phase, and
the superscript  ̌ refers to a real or imaginary fluid phase in con-
tact and equilibrium with phase ˛. The quantity �ˇ

j
is the chemical

potential of species j in solution, while �˛
j(nn) is the normal-to-the-

surface component of the chemical potential tensor of species j in
the solid phase (we assume j to be a single species of a solid). The
identity of the two forms of definition given in Eq. (2) is secured by
the equilibrium condition

�˛
j(nn) = �ˇ

j
, (3)

established by Gibbs for a flat solid/fluid interface. The essential fea-
ture of the definition expressed in Eq. (2) is referencing to a certain
surface through which a solid can dissolute or evaporate. If a solid is
in anisotropic state and has several surfaces of various orientation
(and, possibly, of various nature), there will be also several defi-
nitions of ˝.  In this case, grand thermodynamic potential will be
defined ambiguously. As we shall show below, J-potential does not
possess this disadvantage. We  shall also consider a hybrid version
of J-potential that is not related to a surface at all.

The equilibrium principle for J-potential is written as [1]

(ıJ)T,P,�i,�j(nn)
= 0 (4)

and can be used for finding equilibrium configurations in com-
plex capillary systems. However, we preliminary have to derive
fundamental equations separately for bulk phases, interfaces, and
interfacial lines. For the sake of simplicity, we shall regard a uni-
form (but mechanically anisotropic) solid, which will allow us to
modify slightly the definition expressed in Eq. (1).

2. Fundamental equations for J-potential

Any system consists of bulk phases, interfaces, and interfacial
lines, and fundamental equations in terms of free energy are known
for each of these structural objects. Using these equations, we can
derive corresponding equations in terms of J-potential. We  first
turn to a bulk phase. As was already noted, the generalized grand
thermodynamic potential is related to the choice of a certain sur-
face through which an immobile species of a solid can pass to the
mobile state and through which one can govern the normal com-
ponent of its chemical potential tensor. The surface of a uniform
anisotropic solid phase  ̨ is assumed to be flat (this condition is

mandatory for  ̋ [4]) and adjacent to a fluid phase  ̌ with pres-
sure p. Then the external stress P = −p acts on the solid, and the free
energy of phase  ̨ is given by the expression [2,4]

F˛ = −pV˛ +
∑

i

�iNi + �˛
j(nn)N

˛
j (5)

In this case, it is convenient to modify the definition given in Eq.
(1) to the form

J ≡  ̋ − PV =  ̋ + pV, (6)

which differs from Eq. (1) by replacing �V for V (practical tasks
with the use of J-potential are typically solved at constant P, so that
the product P�V differs from PV by a constant, but thermodynamic
potentials are defined within a constant at all). According to Eqs.
(2) and (5), ˝˛ = −pV˛ and this means that grand thermodynamic
potential will be different for surfaces with different pressures. By
contrast, Eqs. (2), (5) and (6) yield, irrespective of direction,

J˛ = 0. (7)

This important result shows that bulk phases do not contribute to
J-potential in the case of a flat surface. It follows from here the
significance of J-potential for surface science. It is of note that the
above result was obtained for a mechanically anisotropic state of a
solid bulk phase when the principal stresses and principal values
of the chemical potential tensor of immobile species are different.
A reader will easily verify Eq. (7) to remain the more valid for an
isotropic state of the phase.

As for fundamental equations for interfacial surfaces and lines,
we have, first of all, to note the following. The procedure of taking
Gibbs excesses is evident to be inapplicable to the last term in Eq.
(1). The definition given in Eq. (6) is still more demonstrative since
the zero excess of −PV is obvious. For this reason any excesses for
J-potential coincide with excesses for ˝.  As was shown by Gibbs,
mechanical (as excess stress) and thermodynamic (as the work of
formation of unit new surface) definitions coincide for fluids but
differ for solids. Gibbs himself always worked with thermodynamic
surface tension �, and grand thermodynamic potential was gener-
alized for solids [4] just to show that � is defined as an excess of ˝
per unit surface area at an arbitrary location of a dividing surface.
Thus, we can write for the surface excess of J-potential

J̄ = ¯̋
 = �A (8)

where the upper bar denotes excess. On the other side, we have
from Eq. (2)

J̄ = ¯̋
 ≡ F̄ −

∑
i

�iN̄i − �ˇ
j

N̄j = F̄ −
∑

i

�iN̄i − �˛
j(nn)N̄j (9)

Following the procedure accepted, we  find the fundamental equa-
tion for J̄ from the differential expression (we  choose the second
form of Eq. (9) as a more general one)

dJ̄ = dF̄ −
∑

i

�idN̄i −
∑

i

N̄id�i − �˛
j(nn)dN̄j − N̄jd�˛

j(nn) (10)

The fundamental equation for excess free energy is of the form
(Eq. (6.5) in Ref. [2], we  have only added the last term)

dF̄ = −S̄dT + A( �̂ : dê�) − A( �̂ − �1̂) : dN̂j/Nj

+
∑

i

�idN̄i + �˛
j(nn)dN̄j (11)

where S is entropy, T is temperature, �̂ is the two-dimensional ten-
sor of mechanical surface tension (a surface excess from the stress
tensor), ê� is the two-dimensional tensor of apparent strain (the
colon symbolizes the biscalar product of tensors), and N̂j is the two-
dimensional mass displacement tensor [3] (dN̂j/Nj imitates the part
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