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Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain.
Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles.
However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately
in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such
as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction
scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is ef-
fective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called
compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI vol-
umes that are under-sampled in g-space to reconstruct diffusion signal with complex orientations. The proposed
method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal
(at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal
correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction meth-
od of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed meth-
od is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental
results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution

dMRI data with very good data fidelity in clinically feasible acquisition time.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a key
technique for studying the neural architecture and connectivity of the
brain. It utilizes multiple 3-dimensional diffusion-weighted images to
probe the water diffusivity along various directions. Its importance has
been proven in clinical settings for investigating several brain disorders
such as Alzheimer's disease, schizophrenia and mild traumatic brain in-
jury (Thomason and Thompson, 2011; Shenton et al., 2012). However,
low signal-to-noise ratio (SNR) and acquisition time limit the typically
spatial resolution of dMRI to the order of 2 x 2 x 2 mm°. Consequently,
dMRI has been mainly used to study medium-to-large white matter
structures. Further, partial volume effects (PVE) which occur at the in-
terface of different tissue types (gray-white, gray-CSF (cerebrospinal
fluid) and white-CSF) can have significant effect on the measured diffu-
sion properties and can lead to erroneous inferences (Metzler-Baddeley
et al.,, 2014; Alexander et al., 2001). While some of the effects of CSF
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contamination can be removed using free-water modeling (Metzler-
Baddeley et al., 2012), yet large voxel sizes can lead to erroneous results
in tractography. Consequently, increasing the spatial resolution of dMRI
is imperative for investigation of small white-matter fascicles originat-
ing in small cortical and sub-cortical gray matter structures (such as,
substantia nigra or sub-thalamic nucleus).

Reducing the voxel size of dMRI is challenging because the SNR is di-
rectly proportional to the voxel size if the readout time is fixed (see
Nishimura, 1996, page 163). Although SNR could be enhanced by aver-
aging multiple acquisitions, the increase in SNR is proportional to the
square root of the number of averages. For example, reducing the
voxel size from 2 x 2 x 2 mm° to 1 x 1 x 1 mm? requires 64 averages
to obtain equivalent SNR, which makes it impractical to use such an “av-
eraging” scheme in current clinical setting. Recently, several methods
have been proposed to obtain high-resolution (HR) dMRI data. These
methods can be classified into two categories based on their acquisition
strategies. The first group of methods obtains high spatial resolution
using a single low-resolution image via intelligent interpolation. These
types of methods have been widely used for natural images (van
Ouwerkerk, 2006) and more recently for MRI (Manjén et al., 2010;
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Rousseau, 2010) and dMRI (Coupé et al., 2013; Dyrby et al., 2014).
Though, these methods preserve and enhance certain anatomical de-
tails, their performance still largely depends on the original image reso-
lution, as pointed out in the work of Dyrby et al. (2014).

The second group of methods uses the concept of super-
resolution to obtain high resolution data from multiple LR image vol-
umes acquired according to specific sampling schemes. A HR image is
estimated by intelligently fusing the LR images. This type of method
was initially studied in Irani and Peleg (1993) for reconstruction of
HR images using multiple LR stereo images. It has since been applied
to obtain HR anatomical MRI images (Greenspan et al., 2002;
Greenspan, 2009; Gholipour et al., 2010) by employing sub-pixel-
shifted scans along the slice-select dimension. In the field of diffu-
sion MRI, it was first proposed in Peled and Yeshurun (2001) to ob-
tain high resolution diffusion tensor images. The authors in
Scherrer et al. (2012) used acquisition from three orthogonal direc-
tions to perform super-resolution, while the authors in Poot et al.
(2010) use a generalized version with arbitrary slice acquisition di-
rection to obtain HR images. However, in most these methods,
super-resolution was applied independently to each individual dif-
fusion weighted volume and the correlation between diffusion
signals in q-space was not taken into account during the reconstruc-
tion process. As a result, each of the LR images were either acquired
or interpolated on the same set of diffusion gradients prior to
obtaining the complete dMRI volume. Further, all of the LR volumes
have to be corrected for EPI (echo-planar imaging) distortions,
which are different for different slice-select directions. This requires
accurate non-rigid registrations and blip-up blip-down acquisitions
as in Sotiropoulos et al. (2013) for correcting the distortions, making
the acquisition time significantly long. To address this problem, more
recently, Van Steenkiste et al. (2013) introduced a method that used
the diffusion tensor imaging (DTI) technique to model the diffusion
signal in g-space. It was extended in Van Steenkiste et al. (2014)
and Van Steenkiste et al. (2015) to allow the LR images to be ac-
quired along different sets of gradients in q-space. Though this ap-
proach does reduce acquisition time and is robust to motion, a very
simplistic diffusion tensor model is not appropriate for modeling
more complex diffusion phenomena (crossing fibers). The proposed
work is a generalization of this technique with no parametric model
assumed about the diffusion signal and thus recovers the true under-
lying signal in its most general form (for a given b-value). A prelim-
inary version of this paper has been accepted for publication in the
conference on Information Processing in Medical Imaging (IPMI)
2015.

Our contributions

In this paper, we propose to combine the concepts of compressed
sensing and super-resolution to reconstruct very high resolution diffu-
sion data. In particular, we focus on a specific g-space sampling scheme
known as high angular resolution diffusion imaging (HARDI) which
uses several diffusion measurements at a single b-value shell (Tuch,
2004; Alexander, 2005). The proposed CS-SRR method reconstructs a
HR image using multiple LR data sets which are also under-sampled in
g-space. As illustrated in Fig. 1, given three thick-slice data sets that
are sub-pixel-shifted along the slice-select dimension and have Ny, N,
and N3 gradient directions, respectively, we reconstruct a thin-slice
high resolution dMRI data set that has N; + N, + N5 gradients. Being
a non-parametric method, the proposed approach is capable of resolv-
ing crossing of multiple fiber-bundles in the reconstructed high resolu-
tion image.

The proposed method uses spatial and g-space regularization tech-
niques for reconstructing HR diffusion data. Additionally, we incorpo-
rate a-priori knowledge about the tissue type (gray, white or CSF)
from a high-resolution T1-weighted image to adaptively reconstruct
the HR diffusion data. Compressed sensing reconstruction from under-

Fig. 1. An illustration of the proposed CS-SRR scheme: a high-resolution image is recon-
structed using three overlapping thick-slice volumes with down-sampled diffusion
directions.

sampled data in g-space is achieved by means of a sparsifying basis of
spherical ridgelets (Michailovich et al., 2011), whereas sparsity and
smoothness in the spatial domain is incorporated by means of total-
variation (TV) regularization. We design a convex cost functional and
introduce an efficient optimization algorithm based on ADMM for solv-
ing the CS-SRR problem. We quantitatively evaluate the performance of
our method by comparing short and long range fiber connectivity as
well as the estimated diffusion measures such as fractional anisotropy
(FA) and mean diffusivity or trace. The performance is evaluated for a
synthetic scenario using the Human-Connectome-Project (HCP) data
set and in a true SRR scenario, whereby quantitative comparison is
made between high resolution data obtained using the proposed CS-
SRR method and that obtained directly from the MR scanner (from re-
peated scans). We should note that, to the best of our knowledge, this
is a first instance of combining compressed sensing and super-
resolution to reconstruct the HR diffusion signal without any modeling
assumptions of the diffusion process. The proposed acquisition and re-
construction scheme allows to reduce the scan time significantly (up-
to 3 times) compared to the standard super-resolution reconstruction,
which would require at-least 3 times more measurements than the pro-
posed method. We thus expect the proposed method to be of great util-
ity for future neuroimaging studies.

Background

In this section, we provide a brief background on diffusion-weighted
MRI, spherical ridgelets and the compressed sensing technique, which
will be used subsequently in the proposed CS-SRR algorithm.

Diffusion-weighted imaging

Diffusion MRI is a favorite research tool for investigating the neural
architecture and the connectivity of the brain. The ensemble average
diffusion propagator (EAP) is usually estimated from the diffusion mea-
surements to describe the average displacement of water molecules
within a voxel during the sampling period, which provides important
structural information about the underlying tissue. In the narrow
pulse setting (for single pulse field gradient experiment), the diffusion
signal S(q) is related to the EAP P(r) via the Fourier transform given
by Stejskal and Tanner (1965)

P(r) = E(q) exp(—i2nq - r)dq
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