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22Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection
23(MSD) theory for signalswith intrinsic structures described byweighted graphs. First, we regard graph Laplacian
24eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few
25graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector
26can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely,
27we consider signals with bounded variation on graphs and more general signals that are randomly drawn
28from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random
29signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian dis-
30tribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both
31with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem
32of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with
33Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional
34magnetic resonance imaging (R-fMRI) data of 30 earlymild cognitive impairment and 20NC subjects. Our results
35demonstrate that theMSD approach is able to outperform the traditionalmethods and help detect AD at an early
36stage, probably due to the success of exploiting the manifold structure of the data.

37 © 2015 Published by Elsevier Inc.
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42 Introduction

43 Matched subspace detection is a classic tool that determines
44 whether a multidimensional signal lies in a given linear subspace or
45 not (Scharf and Friedlander, 1994). It has achieved great success in ap-
46 plications such as radar, hyperspectral imaging (Manolakis and Shaw,
47 2002) and medical imaging (Li et al., 2009). The subspace is either
48 known from the physical system that generates the signal, or can be in-
49 ferred from training data. Subspace learning is a natural way of data di-
50 mension reduction and can be achieved by principal component
51 analysis (PCA), which projects the original data to a linear subspace
52 spanned by the leading eigenvectors of the covariance matrix (Jolliffe,
53 2005). While a common assumption of PCA is that the data come from
54 a linear subspace, many real data are lying in or close to a nonlinear
55 manifold, which is a topological space that resembles Euclidean space
56 around each point (Belkin and Niyogi, 2003). Examples of the latter
57 case include brain images (Liu et al., 2013), genetic data (Lee et al.,
58 2008), social network records, and sensor network measurements. In
59 this setting, the low-dimensional subspace that best preserves the

60intrinsic geometry of the data can be effectively learned by graph spec-
61tral methods, e.g., isomap, locality linear embedding (LLE), Laplacian
62eigenmaps (Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul
63et al., 2006; Tenenbaum et al., 2000).
64In neuroimaging, as more and more nonlinear data are collected by
65multiple imaging modalities, there is a need for classifying data with
66complex intrinsic structures. For instance, the analysis and classification
67of positron emission tomography (PET) images or functional magnetic
68resonance imaging (fMRI) data may facilitate the prediction and early
69detection of Alzheimer's disease (AD). Concurrently, an emerging area
70of signal processing on graphs is developed for handling these challeng-
71ing data through the combination of algebraic and spectral graph theo-
72retic concepts with computational harmonic analysis (Shuman et al.,
732013). Signals are assumed to reside on vertices of weighted graphs
74which are often naturally defined by the application. The weight associ-
75ated with a certain edge in the graph represents the similarity between
76the two vertices joined by the edge. We refer to graph supported data
77as graph-signals, to differentiate them from conventional signals in
78Euclidean spaces. In the brain imaging classification, we could view
79the PET/fMRI data as graph-signals on weighted graphs describing the
80affinity between each pair of brain regions.
81Motivated by the above data classification requirement, we are in-
82terested in developing a detection framework for graph-signals.
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83 Specifically, we formulate several hypotheses to decide which graph
84 structure is more likely to match a given signal. Moreover, we exploit
85 the matched subspace detection technique and propose different
86 types of graph-signal models to make our framework generic to deal
87 with a variety of real situations. The subspace for graph-signal is formed
88 by eigenvectors of the Laplacian matrix L of the graph. The graph
89 Laplacian matrix encodes the structure of the graph concisely. From a
90 graph signal processing point-of-view, eigenvectors of L could be treat-
91 ed as the generalization of the basis of conventional Fourier transform
92 (Agaskar and Lu, 2013; Sandryhaila and Moura, 2013; Shuman et al.,
93 2013). Based on spectral graph theory, we can define the variation of
94 graph-signals. It follows that the variation of an eigenvector of L is
95 equal to the associated eigenvalue (Hu et al., 2015a). When we decom-
96 pose a signal containing instantaneous fMRI measurements into linear
97 combination of eigenvectors of Laplacian matrix associated with the
98 brain-region-affinity graph, we might deem that the components in
99 those eigenvectors with larger eigenvalues as being noisier if the true
100 fMRI signal is assumed to be bandlimited on the graph (Gadde et al.,
101 2013; Kim et al., 2013; Meyer and Shen, 2014).
102 Our first hypothesis testmodel simply assumes that the signal lies in
103 a subspace spanned by the first few Laplacian eigenvectors correspond-
104 ing to smaller eigenvalues. The traditional matched subspace detection
105 could be applied directly to this case. Furthermore, we consider two cat-
106 egories of graph-signal models: deterministic signals with constraints
107 and probabilistic signals with prior distributions. For deterministic sig-
108 nals, we impose a bounded variation on the signal with respect to the
109 graph. The penalized maximum likelihood estimator (MLE) of the true
110 signal is derived by solving a constrained optimization problem. We
111 find that the test is a weighted energy detector. For probabilistic signals,
112 whenwe choose a certain degenerate Gaussian distribution as the prior
113 of the projection coefficients of the signal onto the graph Laplacian ei-
114 genvectors, the decision ends up comparing the signal variations on
115 the two hypothetic graphs in a noise-free case.
116 We evaluate the effectiveness of the matched signal detection
117 (MSD) theory on both synthetic and real data sets. Simulations based
118 on randomly generated graphs demonstrate the feasibility of our ap-
119 proaches even if we do not know the exact probability distributions
120 of the testing signals. Then, we apply the proposed detection algo-
121 rithms to brain imaging classification tasks of AD. As one of the most
122 prevalent forms of dementia, AD is believed to be a brain network asso-
123 ciated disease (Gomez-Ramirez and Wu, 2014; Raj et al., 2012;
124 Sepulcre et al., 2013), and is characterized by progressive impairment
125 of memory and other cognitive capacity. It affects nearly 36 million
126 people worldwide with an expected number of cases to be 65.7 million
127 by 2030 (Brookmeyer et al., 2007). The development of neuroimaging
128 classification techniques may enable us to monitor the functional and
129 anatomical changes of the brain in vivo and discover reliable bio-
130 markers for identifying AD at an early stage. In this study, we have
131 compared a novel MSD approach with other widely used methods in-
132 cluding principle component analysis (PCA), support vector machine
133 (SVM) and linear discriminant analysis (LDA) on two data sets: one is
134 PET imaging of brain amyloid using Pittsburgh compound-B (PIB) trac-
135 er of AD and normal control (NC) subjects; the other contains resting-
136 state fMRI (R-fMRI) images of early mild cognitive impairment (EMCI)
137 and NC subjects in the Alzheimer's Disease Neuroimaging Initiative
138 (ADNI) database. For the MSD, we compute the similarity between
139 each of two brain regions with the Gaussian radial basis function
140 (RBF) kernel. This simple way of building brain networks avoids esti-
141 mating network structures by solving inverse problems, which often
142 requires more data; yet the weighted graphs associated with the net-
143 works approximate the data manifolds. Experimental results show
144 that when using theMSD on graphs, we can achieve significantly better
145 classification performance than the compared algorithms. The results
146 indicate that our method provides an effective way for brain imaging
147 classification, probably due to the capability of exploiting the manifold
148 structure of the data.

149Our contributions in this paper are three-fold: first, we have devel-
150oped a matched signal detection theory for graph-signals which are
151ubiquitous inmedical imaging applications; second, we keep the frame-
152work generic and simple by proposing a variety of signal models and
153using simple similarity metrics to construct graphs; third, we demon-
154strate that the detection theory is particularly suitable for neuroimaging
155classifications.

156Theory

157To formulate the framework of matched signal detection on graphs,
158we first introduce the concept of graph-signals. We extend the tradi-
159tional Fourier transform to a graph Fourier transform and define a no-
160tion of graph-signal frequency based upon spectral graph theory.
161Then, to model different real data, we propose three classes of signal
162models on graphs. Finally, we derive the signal detection criterion
163under each signal model.

164Weighted graphs and graph-signals

165Many contemporary applications such as social, power grid, sensor,
166and brain networks involve high-dimensional data with natural struc-
167tures defined by weighted graphs. To efficiently process such signals
168on graphs, an emerging field of signal processing on graphs integrates
169the graph spectral theory with computational harmonic analysis. Here
170we present basic concepts of signal processing on graphs in the context
171of neuroimaging data analysis.
172A brain network can be represented by aweighted graphGðV;E;WÞ
173containing a vertex set VðjVj ¼ NÞ, an edge set E and a weighted adja-
174cency matrix W. The vertices typically indicate a group of predefined
175brain regions or a set of image voxels (Stanley et al., 2013; Zalesky
176et al., 2010). If there is an edge between vertices i and j, thenWijdenotes
177the weight of the edge; otherwise, Wij = 0. We assume the similarity
178metric is symmetric and non-negative, namely Wij = Wji ≥ 0 for all i
179and j. Meanwhile, it is reasonable to assume that no brain region is iso-
180lated. Therefore,G should be undirected and connected. Physiologically,
181Wijmayquantify the similarity of two brain regions in termsof their bio-
182chemical measurements (such as the amyloid deposition revealed by
183PIB-PET) or anatomical properties (such as the number of fiber path-
184ways connecting those regions). The exact formula of the weights
185could be chosen flexibly based on different applications.
186In addition to the adjacency matrix, we introduce the graph
187Laplacian as another important graph associated matrix. We denote by
188D the degree matrix which is diagonal with Dii = ∑j = 1

N Wij. Then, the

189graph Laplacian is defined as L¼de f D−W . Because L is a real symmetric
190matrix, it has a complete set of orthonormal eigenvectors { fi}i = 1,…,N.
191If G is connected, the associated eigenvalues {λi}i = 1,…,N are real non-
192negative with the unique smallest eigenvalue being zero (Chung,
1931997). We assume that the eigenvalues are increasingly sorted as 0 =
194λ1 ≤ λ2 ≤ … ≤ λN. By eigendecomposition, we can decompose the
195graph Laplacian into L = FΛFT, where Λ is diagonal with Λii = λi being
196the ith smallest eigenvalue of L and the ith column of F, fi, is the associ-
197ated eigenvector.
198A signal x defined on the vertices of graphG is a function fromV toℝ.
199This graph-signal could be expressed as a vector in ℝN with the ith ele-
200ment of the vector being a real value assigned to the ith vertex. We
201will also denote this vector by x and use x(i) to indicate both the func-
202tion value at the ith vertex and the ith element of the vector. Examples
203of the graph-signal are in Fig. 1. In practice, we could view PET scans or
204fMRI time series as graph-signals defined on vertices of the brain con-
205nectivity network that is constructed by connecting edges between dif-
206ferent brain regions or image voxels. For a graph-signal x, the graph
207Laplacian behaves as a difference operator on it:

Lxð Þ ið Þ ¼
X
j�i

Wi j x ið Þ−x jð Þ½ �; ð1Þ
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