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Brain graphs provide a useful way to computationally model the network structure of the connectome, and this
has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteris-
tics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of
functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence
increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we
investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach
that estimates the dynamic structure of graph theoreticalmeasures of whole-brain functional connectivity. In ad-
dition to extracting the stationary distribution and transition probabilities of commonly employed graph theory
measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be
used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method
and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal
lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global
integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be
more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal
stationarity of network topology may increase discriminatory power in discriminating between disease states.
Our results confirm and extend findings from other studies regarding the dynamic nature of functional
connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of
functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency
across investigations.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Connectomic analysis using graph theoreticalmethods is increasing-
ly found to be a powerful quantitativemethod for investigating complex
brain networks on the whole-brain level. Through the computation of
neurobiologically interpretable network measures, graph theory pro-
vides a mathematical framework through which topological properties
of the network may be studied, including aspects related to clustering,
efficiency, modularity, long-range connectivity, and small-worldness
(Rubinov and Sporns, 2010; Bullmore and Bassett, 2011). Its application
to functional data on resting state networks from functional MRI,
magnetoencephalography, and electroencephalography has provided

novel insights into various neurological and psychiatric diseases (Stam
and Reijneveld, 2007; Ponten et al., 2009; Vlooswijk et al., 2011;
Chiang and Haneef, 2014). Increasingly, studies are demonstrating the
utility of graph theory measures of functional connectivity for identify-
ing abnormalities in network connectivity and serving as clinical diag-
nostic markers and as markers of disease severity (Wilke et al., 2011;
Vlooswijk et al., 2010; Micheloyannis et al., 2006; Supekar et al., 2008).

Despite the large number of analyses of resting-state network con-
nectivity that use graph theory to explore network connectivity, the
majority rely on the assumption of temporal stationarity. In most
cases, the strength of inter-regional signal associations is calculated
using some measure of linear dependence, such as the synchronization
likelihood or a measure of correlation, over the entire scanning session.
The strength of these associations is then either analyzed as weighted
graphs or binarized into unweighted graphs (Bullmore and Bassett,
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2011). However, recent evidence increasingly shows that inter-regional
signal associations are dynamic over time, and are highly modulated by
attention,medications, and cognitive state (Chang andGlover, 2010). In
addition, (Honey et al., 2009) have found that resting state functional
connectivity exhibits a large degree of variability bothwithin and across
scanning sessions. (Ma et al., 2014) have also demonstrated that
functional connectivity fluctuates over time within scans, furthermore
finding that first-order temporal dynamics may approximate these dy-
namics. Although the reasoning behind the dynamic nature of resting-
state brain topology is a relatively new concept and under investigation,
it is thought to reflect the configuration of functional networks around a
stable anatomical skeleton (Deco et al., 2011). Computational modeling
and empirical work have demonstrated that, at shorter time scales,
these various functional network configurations may be spontaneously
visited around the same anatomical skeleton in the presence of local cell
dynamics (Deco et al., 2011). While some aspects of brain topology,
such as the level of small-worldness, may exhibit greater temporal sta-
tionarity in order to maintain a relatively constant optimum network
configuration, others, such as local measures, may be more susceptible
to local cell dynamics and more likely to traverse multiple configura-
tions. Various functional configurations may also exist in order to
allow flexibility to support different cognitive functions (Fair et al.,
2009).

Recently, studies have noted that conflicting results have arisen in
graph theory investigations of functional connectivity. Investigations
of clustering coefficient and characteristic path length, for example,
have variably found evidence of increase, decrease, or no change in
patients with epilepsy compared to controls (Chiang and Haneef,
2014; van Diessen et al., 2014). One contributing factor to current
inconsistencies in the literature may be small sample sizes and moder-
ate effect sizes (van Diessen et al., 2014). In light of recent evidence
that resting-state functional connectivity is in fact non-stationary,
however, another major factor may be greater temporal instability in
some topological characteristics than others, leading some investiga-
tions to capture the topology of particular functional network configu-
rations while other investigations may capture other topological
configurations. Understanding of temporal dynamics of graphmeasures
of network topology may help address these previous literature
inconsistencies.

The aim of this study is to identify which aspects of network topolo-
gy exhibit less within-scan temporal variability in resting state
networks, with the objective of evaluating which graph theory metrics
may be robustly estimated using static functional connectivity analyses.
To the best of our knowledge, this is the first attempt of quantifying
the relative temporal stationarity of graph theory metrics of brain
network topology in functional connectivity analysis. In particular, we
use a Bayesian hidden Markov model to estimate the transition
probabilities of various graph theoretical network measures using
resting-state fMRI (rs-fMRI) data.We propose two estimators of tempo-
ral stationarity, which can be used to quantitate different aspects of the
temporal stationarity of functional networks: the N-index, which is a
deterministically-based estimator of the number of change-points, and
the S-index, which is a probabilistically-based estimator that takes
into account stochastic variation in the estimated states. Based on the
estimated stationarity distribution and transition probabilities, we
evaluate the relative levels of temporal stationarity among various com-
monly investigated measures of brain network topology. Additionally,
we point to possible hierarchical extensions of our model which may
be used to aid in disease prediction, by showing that incorporating
temporal dynamics into investigations of brain connectivity may
increase discriminatory power of graph theory metrics.

Materials and methods

In order to determine which aspects of network topology are robust
under static functional connectivity analysis, we investigate commonly

employed graph theoretic measures in current literature using a Bayes-
ian hidden Markov model. We apply our proposed estimators to the
healthy control and temporal lobe epilepsy populations, and illustrate
that differences in temporal dynamics between epileptic and healthy
brain networks may be quantitated and may provide a potential diag-
nostic marker.

Participants

Participants consisted of 24 healthy controls (HC; average age,
32.50 ± 1.88 SE (y); age range/Q1/Q3, 19–64/27/35 (y); 8 females) and
32 patients with temporal lobe epilepsy (TLE; average age, 37.56 ± 1.86
SE (y); age range/Q1/Q3, 20–63/32/45 (y); 16 females; average epilepsy
duration, 18.79 ± 2.25 SE (y); epilepsy duration range/Q1/Q3, 2–45/6/31
(y)). Healthy control subjects had normal structural MRIs and no history
of neurologic illness or were taking neurologic medications. TLE patients
were recruited from the University of California, Los Angeles (UCLA) Sei-
zure Disorder Center. Diagnostic evaluation for all subjects included
video-EEGmonitoring, high-resolution MRI, FDG-PET scanning, and neu-
ropsychological testing. Written informed consent was obtained prior to
scanning for all subjects in accordance with guidelines from the UCLA In-
stitutional ReviewBoard. A two-sample t-testwith unequal variances and
Fisher exact test showed no significant difference in age or gender, re-
spectively at the α= 0.05 level of significance.

Image acquisition and pre-processing

Imaging was performed with a 3 T MRI system (Siemens Trio,
Erlangen, Germany). Functional imaging was performed with the fol-
lowing parameters: TR = 2000 ms, TE = 30 ms, FOV = 210 mm,
matrix = 64 × 64, slice thickness 4 mm, 34 slices. Subjects were
instructed to relax with eyes closed during imaging. No auditory stimu-
lus was present except for the acoustic noise from imaging. High-
resolution structural images were obtained during the same imaging
study with the parameters: TR = 20 ms, TE = 3 ms, FOV = 256 mm,
matrix = 256 × 256, slice thickness 1 mm, 160 slices. The images
were acquired in the axial plane using a spoiled gradient recalled
(SPGR) sequence for the anatomical images and an echo planar imaging
(EPI) sequence for the functional images. The imaging sessions included
multiple simultaneous EEG and fMRI recordings, each lasting 5 to
15 min. For resting state fMRI analysis, 20 min of BOLD fMRI data was
used for each subject. To limit the influences of motion, subjects were
checked to ensure that no subjects had a maximum translation of
N1.5 mm (HC, 0.24 ± 0.04 mm; TLE, 0.37 ± 0.04 mm). Resting-state
fMRI was performed for TLE patients after the comprehensive epilepsy
surgery evaluation and prior to epilepsy surgery. Patients remained on
their regular medications during the fMRI. None of the patients had a
seizure in the 24 h preceding the imaging. None of the patients had sei-
zures during the study as confirmed by the simultaneous EEG obtained
during fMRI. The EEG results were not included in the data analysis
other than to exclude seizures. Details of the simultaneous EEGmethods
have been described previously (Stern et al., 2011). Neuroimaging and
fMRI pre-processing steps are similar to that described previously
(Haneef et al., 2014). Preprocessing was performed using FSL (fMRIB
Software Library) version 5.0.7 (Oxford, United Kingdom, www.fmrib.
ox.ac.uk/fsl) (Woolrich et al., 2001; Forman et al., 1995) and included
head movement artifact correction (Jenkinson et al., 2002), nonbrain
tissue elimination (Smith, 2002), high-pass filtering (100 s), spatial
smoothing at 5 mm full-width half-maximum, and mean-based
intensity normalization as described previously for resting-state fMRI
analyses (Fox et al., 2005; Uddin et al., 2009). Excessive headmovement
was corrected using motion scrubbing through nuisance regression
(Power et al., 2012). We used the tool fsl_motion_outliers within
FSL to identify TRs that showed instantaneous changes in blood
oxygen level-dependent (BOLD) intensity that exceeded threshold
(75th percentile + 1.5× interquartile range). The average number of
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