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Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are
constant across time), but this assumption does not always hold true. The authors provide a description of a new
approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in
brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a
second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances
of the random walks associated with state space model parameters and their autoregressive components. The
authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic
resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing
on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps:
Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying
autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps
performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully
related to behavior in a clinical sample.

Published by Elsevier Inc.

Introduction

Background and study motivation

Advances in connectivity mapping of functional neuroimaging data
have significantly increased science and society's understanding of the
brain (Behrens and Sporns, 2012; Smith, 2012).Many of these advances
concern data-driven connectivity analyses (Gates and Molenaar, 2012;
Smith et al., 2011). One type of connectivity analysis is directed func-
tional connectivity mapping, which aims to reveal the direction of rela-
tions between brain regions of interest (ROIs) based on statistical
dependencies in the neural signal (Friston et al., 2013). It has been
accomplished by means of several analysis techniques, particularly
structural equation modeling (SEM) involving only contemporaneous
directed connections, and vector autoregressive modeling (VAR)
involving only lagged directed connections. Estimates of both contem-
poraneous and lagged directed connections can be obtainedwith struc-
tural VARs (Chen et al., 2011; Smith et al., 2012), and (extended) unified
structural equation modeling (euSEM, cf. Gates et al., 2010, 2011; Kim
et al., 2007). In order to streamline computation and aid interpretation,

these analysis techniques often assume stationarity, implying that con-
nectivity parameters are constant across the neuroimaging time series,
but emerging evidence suggests that this assumption is not always an
appropriate one (reviewed in Hutchison et al., 2013).

Researchers have generally used one of two approaches for detect-
ing time-varying relations in connectivity maps. First, sliding windows
show time-varying, or dynamic, relations in these maps. In general,
they determine change in connectivity indices between ROIs across
equally-spaced sections – orwindows – of the time series (for a descrip-
tion, see Franke et al., 2008). The indices of interest are usually derived
from a correlation analysis, but parameters from other analyses
(e.g., time-frequency and independent components) have also been
used (Chang and Glover, 2010; Kiviniemi et al., 2011). This work
shows that time-varying relations are present in resting state and
task-related functional connectivity maps, and that some of the varia-
tion is systematic (e.g., as determined by clustering algorithms) within
and between individuals (Allen et al., 2014; Betzel et al., 2012; Chang
and Glover, 2010; Chang et al., 2013; Handwerker et al., 2012; Jones
et al., 2012; Kiviniemi et al., 2011; Rack-Gomer and Liu, 2012; Sakoğlu
et al., 2010; Tagliazucchi et al., 2012; Thompson et al., 2013).

Second, time-varying (structural) VARs and state spacemodels with
time-varying parameters enable model-based approaches to dynamic
connectivity mapping. In general, they determine time-varying connec-
tivity parameters (including Granger causality indices) between ROIs

NeuroImage 125 (2016) 791–802

⁎ Corresponding author at: Department of Human Development and Family Studies,
The Pennsylvania State University, University Park, PA 16802, USA.

E-mail address: pxm21@psu.edu (P.C.M. Molenaar).

http://dx.doi.org/10.1016/j.neuroimage.2015.10.088
1053-8119/Published by Elsevier Inc.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.10.088&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.10.088
mailto:pxm21@psu.edu
http://dx.doi.org/10.1016/j.neuroimage.2015.10.088
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


using sophisticated estimation techniques. Models for blood oxygen
level-dependent (BOLD) functional magnetic resonance imaging
(fMRI) data have primarily been estimated with recursive least squares
(for a description, seeMöller et al., 2001). State spacemodelswith time-
varying parameters have been considered in, for instance, Milde et al.
(2010) and Havlicek et al. (2011), while Primiceri (2005) presents a
general discussion of time-varying structural VARs. Because of their
direct relevance to the present model, these approaches will be further
discussed below (see Model specification section). Models for electro-
encephalography (EEG) and magnetoencephalography (MEG) data
have also been estimated with Kalman filters and smoothers (for a de-
scription, see Bar-Shalom and Fortmann, 1988), which provide more
noise suppression than sliding windows and more stable estimates
than recursive least squares (Milde et al., 2010; Vedel-Larsen et al.,
2010). Importantly, work using time-varying VARs has similarly found
that dynamic relations are present in task-related effective connectivity
maps (Hemmelmann et al., 2009; Hu et al., 2012; Milde et al., 2010;
Wacker et al., 2011).

Sliding windows and time-varying VARs indicate that the station-
arity assumption does not hold for data-driven connectivity mapping,
but these approaches have limitations. Slidingwindow approaches pro-
vide a coarse, piecemeal estimate of dynamic relations, with findings
varying based on window length; for example, the signal-to-noise
ratio is lower in short versus long windows (discussed in Hutchison
et al., 2013). So far, time-varying VARs have only been used to estimate
lagged dynamic relations using fixed (i.e., not freely estimated) vari-
ances for both invariant and time-varying parameters, while only the
latter should have nonzero variances. Moreover, it is unclear whether
Kalman filters similar to those that have been applied to EEG and MEG
data are appropriate for BOLD data, for which dynamic contemporane-
ous relations are of greatest relevance due to the comparatively low
temporal resolution of the BOLD signal (Beltz and Molenaar, 2015;
Smith et al., 2011). Thus, questions remain concerning the presence of
time-varying relations in data-driven connectivity maps. Do time-
varying relations exist when contemporaneous and lagged connection
parameters are estimatedwithin the samemodel? This is a key question
because both parameter types must be calculated within the same
model in order to ensure accurate magnitude and direction of ROI rela-
tions (Gates et al., 2010; Kim et al., 2007). Furthermore, can arbitrary
(i.e., freely estimated, without information about which relations are
dynamic and how they vary in time) contemporaneous and lagged
time-varying connection parameters in BOLD fMRI data be estimated
with an optimized second-order extended Kalman filtering/smoothing
approach? This is a key question because current Kalman filtering ap-
proaches do not freely estimate the variances of time-varying parame-
ters (Havlicek et al., 2011), requiring that all relations be estimated as
dynamic (e.g., Milde et al., 2010). This may bias results if both constant
and dynamic relations are present in the time series.

It is important to address these methodological limitations because
converging evidence suggests that dynamic relations in functional neuro-
imaging data reflectmeaningful neural processes. Time-varying function-
al relations have been found with multiple neuroimaging modalities,
including fMRI, EEG, and MEG in human beings and local field potential
recordings in cats, suggesting that they are not a mere methodological
byproduct of one signal type in human beings (e.g., Betzel et al., 2012;
Chang and Glover, 2010; de Pasquale et al., 2010; Hemmelmann et al.,
2009; Milde et al., 2010; Popa et al., 2009). In fact, recent work has dem-
onstrated correspondence between dynamic brain relationsmeasured by
BOLD fMRI and EEG (e.g., Chang et al., 2013; Tagliazucchi et al., 2012).
Moreover, time-varying relations have been linked to experimental con-
ditions (e.g., caffeine intake), behavior (e.g., vigilance during an attention
task), and disease states (e.g., Alzheimer's disease and schizophrenia),
suggesting that they are validly reflecting brain-based processes (Jones
et al., 2012; Rack-Gomer and Liu, 2012; Sakoğlu et al., 2010; Thompson
et al., 2013). Finally, time-varying analysis approaches have the potential
to increase understanding of systematic temporal changes in brain

connectivity that were previously detected, but not necessarily
interpreted in terms of neural network stationarity. For example, past
work on the neural underpinnings of olfactory habituation implemented
unique task paradigms in order to overcome the systematic decreases in
brain activity that correspond to repeated presentations of an odorant
(e.g., Karunanayaka et al., 2014), but advances in time-varying analyses
would permit explicit modeling of such habituation effects.

Current study

The goal of the current studywas to validate exploratory state space
models (SSMs) in simulated data and then to estimate the models for
BOLD fMRI data, allowing for explicit modeling of both contemporane-
ous and lagged time-varying connection parameters without a priori
information about which parameters are dynamic. SSMs, of which
VARs are a special case (that do not include measurement models),
also allow for dimension reduction based on principled statistical
methods. Last but not least, to the best of our knowledge for the first
time in neuroimaging an optimal raw data maximum likelihood meth-
od (forGaussian series) or quasi-maximum likelihoodmethod (for non-
Gaussian series) was used, consisting of a second-order extended
Kalman filter/smoother (sEKFS) embedded within a nonlinear optimiz-
er. The sEKFS can be conceived of as acting as E-step and the nonlinear
optimizer as M-step in a nonstandard EM-algorithm. This is an exten-
sion of our previous work (Beltz and Molenaar, 2015; Gates et al.,
2010; Gates and Molenaar, 2012; Gates et al., 2011) regarding innova-
tive connectivity and grouping procedures for BOLD fMRI data, proce-
dures that are among the best in the field (as tested in Gates and
Molenaar, 2012; Smith et al., 2011).

To accomplish our goal, we utilized BOLD fMRI data from nicotine-
deprived cigarette smokers performing a verbal working memory
task. These data are ideal for this methodological investigation because
the nature of the sample and specificity of the task facilitated the inter-
pretation of dynamic relations, when they were found. For instance,
past work has shown differences between the brain activity of smokers
and non-smokers during verbal working memory tasks, and the differ-
ences were modulated by nicotine deprivation (Sutherland et al.,
2011; Xu et al., 2006).

Methods

Participants

Participants were 30 cigarette users (22 men, 8 women), aged 19 to
45 years; they were randomly selected from a sample of 118 individ-
uals, who participated in one of two fMRI studies on smoking cue reac-
tivity (Wilson et al., 2012, 2013). For both studies, participants had to
report smoking an average of 15 to 40 cigarettes per day for the past
24 months, be right-handed, and pass an MRI safety screening.

Procedures

The testing procedures and task are outlined here and described in
detail elsewhere (Nichols et al., 2014;Wilson et al., 2012, 2013). Eligible
participants (as determinedwith a phone interview) came to the lab for
a baseline session that included questionnaire and psychological task
completion. Participants were cigarette-deprived for 12 h before the
neuroimaging session, as confirmed with carbonmonoxide (CO) levels.
During this session, they provided structural MRI data and fMRI data
during multiple tasks, including the verbal working memory task.

Measures

Baseline assessment
During the baseline assessment, basic demographic information and

information regarding smoking patterns were assessed with standard
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