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13We consider the task of inferring causal relations in brain imaging data with latent confounders. Using a priori
14knowledge that randomized experimental conditions cannot be effects of brain activity, we derive statistical con-
15ditions that are sufficient for establishing a causal relation between two neural processes, even in the presence of
16latent confounders. We provide an algorithm to test these conditions on empirical data, and illustrate its perfor-
17mance on simulated as well as on experimentally recorded EEG data.
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23 Introduction

24 Inferring the causal structure of a cortical network is a central goal in
25 neuroimaging (Smith et al., 2011). Various methods have been devel-
26 oped to infer causal relations from brain imaging data, including struc-
27 tural equation modeling (SEM) (Mcintosh and Gonzalez-Lima, 1994;
28 Atlas et al., 2010), Granger causality (GC) (Granger, 1969; Kamiński
29 et al., 2001; Gregoriou et al., 2009), dynamic causal modeling (DCM)
30 (Friston et al., 2003; Daunizeau et al., 2011), and causal Bayesian net-
31 works (CBNs) (Ramsey et al., 2010; Grosse-Wentrup et al., 2011;
32 Ramsey et al., 2011; Mumford and Ramsey, 2014; Weichwald et al.,
33 2015). These methods commonly assume causal sufficiency; that is,
34 they presume that all causally relevant variables have been observed.
35 This assumption is often implausible, because various factors can con-
36 found a causal analysis. These factors include, but are not limited to, un-
37 measured brain regions in an fMRI analysis (Mcintosh and
38 Gonzalez-Lima, 1994; Daunizeau et al., 2011; Friston et al., 2011),
39 cardio-ballistic artifacts in ECoG recordings (Kern et al., 2013), and vol-
40 ume conduction of cortical and non-cortical current sources in EEG or
41 MEG data (Grosse-Wentrup, 2009; Hipp and Siegel, 2013). Because it
42 is not trivial to anticipate potential confounders, results obtained with
43 methods based on causal sufficiency must be interpreted with caution.
44 Latent confounders can be addressed by the IC* (Pearl, 2000) and FCI
45 algorithms (Spirtes et al., 2000; Zhang, 2008), which use the theory of
46 ancestral graphs. Theoretically, both algorithms can distinguish genuine
47 causal relations from spurious relations induced by latent confounders.

48In practice, the involved statistical tests are complex, which currently
49limits their application in neuroimaging to variables that are jointly
50Gaussian distributed (Waldorp et al., 2011). The assumption of jointly
51Gaussian distributed variables has been criticized as unreasonable for
52neuroimaging data (Hanson and Bly, 2001; Wink and Roerdink, 2006;
53Mumford and Ramsey, 2014).
54We contribute to research on causal inference with latent con-
55founders in two ways. First, we show that the statistical tests required
56to identify a genuine causal relation can be simplified when the experi-
57mental condition is randomized. Using the a priori knowledge that a
58randomized experimental condition cannot be caused by neural pro-
59cesses, we analytically prove that if two neural processes aremodulated
60by an experimental condition, a single test of conditional independence
61is sufficient to establish a genuine causal relation between those pro-
62cesses. To emphasize the requirement that, in our approach, the exper-
63imental conditions must be randomized, we later refer to them as the
64stimuli presented to a subject. Second, by using linear regression,we re-
65duce the required conditional independence test to amarginal indepen-
66dence test. This test is advantageous because asymptotically consistent
67statistical tests are readily available for marginal independence
68(Gretton et al., 2005, 2008; Gretton andGyörfi, 2010), but not for condi-
69tional independence (Fukumizu et al., 2008; Zhang et al., 2011). We
70prove that this linearized conditional independence test is sufficient
71but not necessary for conditional independence: while our test may
72fail to detect conditional independence if the assumption of linearity is
73not met, a positive test result implies that this assumption has been ful-
74filled. Taken together, our two contributions lead to a non-parametric
75version of the instrumental variable approach to causal inference
76(Angrist et al., 1996; Pearl, 2000). The resulting algorithm, which we
77term stimulus-based causal inference (SCI), can provide empirical
78evidence for a causal relation between two neural processes, even in
79the presence of latent confounders.
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80 We demonstrate the performance of the SCI algorithm on simulated
81 as well as on experimentally recorded EEG data. We first use a neural
82 mass model for spectral responses in electrophysiology (Moran et al.,
83 2007) to provide estimates of the power and of the false discovery
84 rate (FDR) of the SCI algorithm for a variety of causal models. We then
85 show how our method can be used to infer group-level causal relations
86 on EEG data, which we recorded for a study on brain–computer inter-
87 facing (BCI) (Grosse-Wentrup and Schölkopf, 2014). In this study, sub-
88 jects were trained via neurofeedback to self-regulate the amplitude of
89 γ-oscillations (55–85 Hz) in the right superior parietal cortex (SPC), a
90 primary node of the central executive network (CEN) (Bressler and
91 Menon, 2010). Because transcranial magnetic stimulation (TMS) of
92 the CEN has been found to modulate the medial prefrontal cortex
93 (MPC) (Chen et al., 2013), we hypothesized that self-regulation of
94 γ-power in the right SPC causes variations in γ-power in theMPC. Con-
95 sistent with this hypothesis, the SCI algorithm determined the MPC to
96 be modulated by the right SPC. We conclude the article with a discus-
97 sion of the utility and of the limitations of causal inference to study
98 the structure and the function of cortical networks.
99 We note that the SCI algorithm is applicable not only to EEG record-
100 ings but also to any neuroimaging data set that is based on randomized
101 experimental conditions. We have condensed the SCI algorithm into
102 one line of Matlab code, which is available at http://brain-computer-
103 interfaces.net.

104 Methods

105 We begin this section by introducing the framework of causal
106 Bayesian networks (CBNs), which our work is based on (cf. Ramsey
107 et al., 2010; Grosse-Wentrup et al., 2011; Ramsey et al., 2011; Mumford
108 andRamsey, 2014;Weichwald et al., 2015 for applications of this frame-
109 work in neuroimaging). We then present the sufficient conditions to
110 establish causal influence of one cortical process on another in
111 stimulus-based experiments (Section 2.2). In Section 2.3, we use linear
112 regression to reduce the required conditional independence test to a
113 marginal independence test. We discuss how to apply the resulting
114 causal inference procedure to empirical data in Section 2.4.We conclude
115 the methods section with a discussion of the relation of the SCI algo-
116 rithm to instrumental variables in Section 2.5.

117 Causal Bayesian networks

118 In the framework of CBNs, a random variable x is a cause of another
119 randomvariable y if setting x to different values by an external interven-
120 tion changes the probability distribution over y (Pearl, 2000; Spirtes
121 et al., 2000). In the notation of the do-calculus, this is expressed as
122 p(y|do(x)) ≠ p(y) for some values of x and y. Thus, the framework of
123 CBNs defines cause-effect relations in terms of the impact of external
124 manipulations. This definition contrasts those of frameworks which
125 define causality in terms of information transfer (Granger, 1969;
126 Roebroeck et al., 2005; Gregoriou et al., 2009; Lizier and Prokopenko,
127 2010).
128 Causal relations between a setX of randomvariables are represented
129 by edges in a directed acyclic graph (DAG). The causal Markov condition
130 (CMC) relates the structure of a DAG, as represented by its edges, to sta-
131 tistical independence relations between the variables in X . Specifically,
132 it states that every (conditional) independence implied by a DAG is also
133 found in the joint probability distribution p(x). We recall that two
134 random variables x and y are statistically independent (conditional on
135 a third random variable z) if and only if their joint distribution factorizes
136 into the product of its marginals, i.e. if and only if p(x, y) =
137 p(x)p(y) (p(x, y|z) = p(x|z)p(y|z)). Intuitively, this states that observ-
138 ing x does not provide any information on how likely certain outcomes
139 of y are (and vice versa). We abbreviate statistical independence be-
140 tween x and y (conditional on z) as x ╨ y(x ╨ y|z). Assuming the CMC,
141 (conditional) independence relations can be read off the structure of a

142DAG by checking for d-separation properties. A set of nodes D is said
143to d-separate x and y if every path from x to y contains at least one var-
144iable z such that either z is a collider (→z←) and no descendant of z (in-
145cluding z itself) is in D; or z is not a collider and z is in D. We provide
146examples of d-separation in the next paragraph and refer the interested
147reader to Pearl (2000) or Spirtes et al. (2000) for a more exhaustive in-
148troduction to the concept of d-separation. The CMC thus relates struc-
149tural properties of DAGs to empirically observable independence
150relations. To perform causal inference,we also need to relate empirically
151observable independence relations to structural properties of the data-
152generating DAG. This is achieved by the assumption of faithfulness.
153Faithfulness asserts that every (conditional) independence relation in
154p(x) is implied by the structure of the associated DAG. Taken together,
155the CMC and faithfulness ensure that two variables x and y are condi-
156tionally independent given z if and only if x and y are d-separated by
157z. This equivalence gives us insight into the structure of a DAG from em-
158pirically testable (conditional) independence relations.
159We now provide three examples of d-separation that are relevant to
160our following arguments. First, consider the chain x→ z→ y. Here, x and
161y are marginally dependent ( ), because x influences y via z. How-
162ever, as z d-separates x and y by blocking the directed path from x to y, x
163and y are statistically independent given z(x╨ y|z). Second, consider the
164fork x ← z → y. Again, x and y are marginally dependent ( ),
165because they share a common cause z. This common cause z again
166d-separates x and y by removing the joint effect of z on x and y, render-
167ing x and y independent conditional on z(x ╨ y|z). Third, consider the
168collider x→ z← y. In this case, x and y are independent (x ╨ y), because
169they are d-separated by the empty set. Because z is a joint effect of x and
170y, however, it unblocks the previously blocked path between x and y,
171rendering x and y dependent conditional on ( ).
172These three examples form the basis of causal inference in CBNs. For
173instance, if we observe that x╨ y yet , thenwe can conclude that
174our data has not been generated by a chain or by a fork. These observa-
175tions limit the possible causal structures to only collider and DAGs with
176additional (latent) variables. Amore comprehensive introduction to the
177framework of CBNs in the context of neuroimaging is given inMumford
178and Ramsey (2014).

179Causal inference in stimulus-based paradigms

180In this article, we only consider DAGs over a set of three random var-
181iables, V ¼ fs; x; yg. The variables x and y represent brain state features,
182and s represents an experimental condition. For our theoretical argu-
183ments, we assume the joint probability distribution p(s, x, y) to be
184known. This assumption implies that we have access to an oracle for
185any conditional independence relation in V. We relax this assumption
186in Section 4. Note that, while x and y may represent any measure of
187brain activity, it is helpful to consider trial-averaged blood-oxygen-
188level-dependent (BOLD) activity at different cortical locations or trial-
189averaged band power at two EEG channels as examples.
190In the following, we assume that s codes a randomized experimental
191stimulus that is presented to the subject before x and y are measured.
192This assumption leads to the following theorem.

193Theorem 1. Causal inference in stimulus-based paradigms

194Let s, x, and y be three random variables with a joint probability distri-
195bution p(s, x, y) that is faithful to its generating DAG. Further, assume that s
196codes a randomized experimental stimulus that is presented before x and y
197aremeasured. Then the following three conditions are sufficient for x to be a
198genuine cause of y (x → y):

1991. s is not independent of ( ),
2002. s is not independent of y ( ), and
2013. s and y are independent conditional on x(s ╨ y|x).
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