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24Background: Diffusion tensor imaging (DTI) is applied in investigation of brain biomarkers for neurodevelopmental
25and neurodegenerative disorders. However, the quality of DTI measurements, like other neuroimaging techniques,
26is susceptible to several confounding factors (e.g., motion, eddy currents), which have only recently come under
27scrutiny. These confounds are especially relevant in adolescent samples where data quality may be compromised
28in ways that confound interpretation of maturation parameters. The current study aims to leverage DTI data from
29the Philadelphia Neurodevelopmental Cohort (PNC), a sample of 1601 youths with ages of 8–21 who underwent
30neuroimaging, to: 1) establish quality assurance (QA) metrics for the automatic identification of poor DTI image
31quality; 2) examine the performance of these QAmeasures in an external validation sample; 3) document the influ-
32ence of data quality on developmental patterns of typical DTI metrics.
33Methods: All diffusion-weighted images were acquired on the same scanner. Visual QA was performed on all sub-
34jects completing DTI; images were manually categorized as Poor, Good, or Excellent. Four image quality metrics
35were automatically computed and used to predict manual QA status: Mean voxel intensity outlier count
36(MEANVOX), Maximum voxel intensity outlier count (MAXVOX), mean relative motion (MOTION) and temporal
37signal-to-noise ratio (TSNR). Classification accuracy for each metric was calculated as the area under the receiver-
38operating characteristic curve (AUC). A threshold was generated for each measure that best differentiated visual
39QA status and applied in a validation sample. The effects of data quality on sensitivity to expected age effects in
40this developmental samplewere then investigated using the traditionalMRI diffusionmetrics: fractional anisotropy
41(FA) and mean diffusivity (MD). Finally, our method of QA is compared with DTIPrep.
42Results: TSNR (AUC=0.94) best differentiated Poor data fromGoodandExcellent data.MAXVOX (AUC=0.88) best
43differentiatedGood fromExcellent DTI data. At the optimal threshold, 88% of Poor data and 91%Good/Excellent data
44were correctly identified. Use of these thresholds on a validation dataset (n = 374) indicated high accuracy. In the
45validation sample 83% of Poor data and 94% of Excellent datawas identified using thresholds derived from the train-
46ing sample. Both FA and MD were affected by the inclusion of poor data in an analysis of age, sex and race in a
47matched comparison sample. In addition, we show that the inclusion of poor data results in significant attenuation
48of the correlation between diffusionmetrics (FA andMD) and age during a critical neurodevelopmental period.We
49find higher correspondence between our QAmethod andDTIPrep for Poor data, butwefind ourmethod to bemore
50robust for apparently high-quality images.
51Conclusion:Automated QA of DTI can facilitate large-scale, high-throughput quality assurance by reliably identifying
52both scanner and subject induced imaging artifacts. The results present a practical example of the confounding
53effects of artifacts on DTI analysis in a large population-based sample, and suggest that estimates of data quality
54should not only be reported but also accounted for in data analysis, especially in studies of development.
55© 2015 Published by Elsevier Inc.

5657

58

59

NeuroImage xxx (2015) xxx–xxx

⁎Q12 Corresponding author at: Department of Psychiatry, Neuropsychiatry Section, Brain Behavior Laboratory, 10th Floor, Gates Building, Hospital of the University of Pennsylvania,
Philadelphia, PA 19104, USA.

E-mail address: roalf@upenn.edu (D.R. Roalf).

YNIMG-12704; No. of pages: 17; 4C: 6, 8, 10, 11, 13, 14

http://dx.doi.org/10.1016/j.neuroimage.2015.10.068
1053-8119/© 2015 Published by Elsevier Inc.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Please cite this article as: Roalf, D.R., et al., The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale
population-based cohort, NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.10.068

http://dx.doi.org/10.1016/j.neuroimage.2015.10.068
mailto:roalf@upenn.edu
Journal logo
http://dx.doi.org/10.1016/j.neuroimage.2015.10.068
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg
http://dx.doi.org/10.1016/j.neuroimage.2015.10.068


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

60 Introduction

61 DiffusionQ13 tensor imaging (DTI) is an important magnetic resonance
62 imaging (MRI) technique in the investigation and identification of
63 brain biomarkers in typical neurodevelopment, cognitive aging and
64 neuropsychiatric syndromes. DTI is based on the quantification of the
65 random Brownian motion of protons, which enables the measurement
66 of the spatial organization of brain tissue (Basser et al., 1994; Le Bihan
67 et al., 2001). Specifically, DTI provides contrasts that are sensitive to
68 intra-voxel white matter microstructure (Basser and Pajevic, 2000)
69 and produces results that are consistent with the major white matter
70 pathways detailed in animal models and in retinotopic studies in the
71 human brain (Conturo et al., 1999; Le Bihan, 2003). An extensive DTI lit-
72 erature details findings in normal development (e.g., Ladouceur et al.,
73 2012; Lenroot and Giedd, 2010; Oishi et al., 2013; Yoshida et al., 2013)
74 and neuropsychiatric conditions, including schizophrenia (Roalf et al.,
75 2015; Wheeler and Voineskos, 2014), autism (Konrad and Eickhoff,
76 2010; Travers et al., 2012) and Alzheimer's disease (Radanovic et al.,
77 2013; Zhang et al., 2014). Moreover, large consortia, such as the
78 Human Connectome Project (Van Essen et al., 2012) and the Alzheimer's
79 Disease Neuroimaging Initiative (Jack et al., 2010) rely on DTI data as a
80 major outcomemeasure. However, DTI is notwithout practical challenges
81 that affect the reliability and reproducibility of results (Le Bihan et al.,
82 2006).
83 Neuroimaging data confounds, in particular head motion, are quite
84 pertinent in human samples (Liu et al., 2015; Power et al., 2012), espe-
85 cially children (Yoshida et al., 2013) and adolescents (Satterthwaite
86 et al., 2012). For example, the confounding influence of head motion
87 on resting-state functional connectivity has received substantial atten-
88 tion (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al.,
89 2012). Similar effects are evident in structural MRI (Reuter et al.,
90 2015) and pediatric DTI samples (Lauzon et al., 2013; Yoshida et al.,
91 2013). DTImeasurements, in general, are reliable as they are insensitive
92 to B1 errors, however, DTI is strongly dependent on gradient calibration
93 and errors in gradient amplitude, direction and linearity, can contribute
94 to inaccurate measurement (Conturo et al., 1995). Nonetheless, the
95 influence of data quality using DTI is understudied and often ignored.
96 Beyond head motion, the quality of DTI measurements is susceptible
97 to several confounds including eddy currents, scanner artifacts (e.g.,
98 noise spikes) and susceptibility artifacts (Anderson, 2001; Bastin et al.,
99 1998; Skare et al., 2000), which have come under scrutiny (Heim
100 et al., 2004; Jones et al.,Q14 1999, 2013; Lauzon et al., 2013; Owens et al.,
101 2012; Tournier et al., 2011; Yendiki et al., 2014), and are the focus of
102 several new methods seeking to mitigate their impact (Li et al., 2013,
103 2014; Oguz et al., 2014). These confounds likely contribute to inaccura-
104 cies in the tensor fitting of DTI data (Le Bihan et al., 2006). For example,
105 head-motion was found to induce group differences between autistic
106 and typically developing children in DTI (Yendiki et al., 2014). Most im-
107 portantly, the use of head-motion as a nuisance regressor during statis-
108 tical modeling reduced this effect. Yet, most developmental and clinical
109 studies using DTI fail to report procedures for quality control and its im-
110 pact on results. It is likely that unaccounted for artifacts result in subop-
111 timal tensor estimation and thus may negatively influence commonly
112 derived DTI metrics, such as fractional anisotropy, mean diffusivity,
113 and estimates of tractography. In addition, because data quality is
114 often systematically related to a phenotype of interest (e.g., age, diagno-
115 sis, cognition, symptom severity) and that data quality is inherently
116 subject dependent (e.g., correlation between age and motion), low
117 quality data has the potential to obscure the presence of real effects or
118 produce spurious associations with study phenotypes.
119 Despite such dangers, automated measures for quality assurance
120 (QA) of DTI data remain limited. Manual inspection of multivolume
121 DTI data is time consuming, subjective and potentially susceptible to op-
122 erator bias, and translates poorly to large-scale imaging studies. Studies
123 of noise in DTI provide a useful framework for identifying how such
124 noise affects diffusion properties (Ding et al., 2005; Farrell et al., 2007;

125Hasan, 2007; Skare et al., 2000). Several recent studies indicate promise
126for implementing automatically derived quality assurance metrics that
127reduce the amount of manual QA effort, including measures of signal-
128to-noise and the use of outlier detection, to quantify data quality prior
129to image processing (Lauzon et al., 2013; Li et al., 2013, 2014; Oguz
130et al., 2014). However, much of this work has used relatively small
131samples or simulated data, and none have focused primarily on a
132neurodevelopment sample (although Lauzon et al., 2013 present
133data in a large pediatric sample). Finally, there is lack of corrobora-
134tion of derived metrics in a validation sample.
135The overall goal of the current study is to determinewhich imageQA
136metrics are most reliable in the automatic detection of poor DTI data.
137We manually evaluate over 1500 DTI data sets from the Philadelphia
138Neurodevelopmental Cohort (PNC; (Gur et al., 2014; Satterthwaite
139et al., 2014), and automatically derive QA measures. This approach
140will be useful in the current cross-sectional sample, in concurrent or
141longitudinal studies, and generalizable tomost DTI studies. Importantly,
142all DTI data in the PNCwas acquiredwithin a 30-month period using the
143same MRI scanner, head-coil and DTI protocol. In addition, 25% of the
144sample returned for a follow-up DTI scan approximately two years
145later, thus providing a unique validation sample. Our goals are: 1) lever-
146age DTI data from the PNC, a sample of 1601 youth between the age of
1478–21 who underwent neuroimaging, to determine automated quality
148assurance metrics that will aid in the automatic identification of poor
149DTI image quality; 2) test these QA measures in a follow-up sample;
150and, 3) determine the influence of data quality on typical DTI metrics
151(e.g., FA and MD), 4) measure changes introduced by including poor
152data in the correlations between FA/MD and age and 5) compare our
153QA processes to a previous published DTI QA tool, DTIPrep (Oguz
154et al., 2014). As described below, results indicate automated QA of DTI
155can facilitate large-scale, high-throughput analysis by reliably identify-
156ing poor quality data and systematically improving data fidelity.

157Materials & methods

158Participants

159Initial sample
160All participants included in this study were enrolled in the PNC
161(Calkins et al., 2014, 2015; Gur et al., 2014; Satterthwaite et al., 2014).
162The PNC is a large community-based epidemiological sample of 9498
163youths, aged 8–21, who underwent clinical and cognitive evaluations.
164A subset of 1000 subjects received multimodal neuroimaging as part
165of the initial PNC project. An additional 601 individuals underwent the
166identical neuroimaging protocol as part of extension of the PNC. Data
167from 244 individuals was considered unusable (Fig. 1). Accordingly,
1681357 individuals comprise the initial sample that received the same
169neuroimaging protocol (Table 1). These data were acquired between
1702009 and 2012. A description of the PNC is available in: http://www.
171med.upenn.edu/bbl/projects/pnc/PhiladelphiaNeurodevelopmental
172Cohort.shtml and the data is available from the National Institutes of
173Health−dbGaP (http://www.ncbi.nlm.nih.gov/gap).

174Validation sample
175Four hundred and four individuals (Table 2) returned approximately
176two years later and underwent the same neuroimaging procedures. Of
177note, these individuals were selected to return based upon successful
178completion and high data fidelity of a structural scan during the initial
179study. DTI quality during the initial studywas not a factor in enrollment
180for follow-up. Thirty individuals did not complete a follow-up DTI scan.
181Thus, thefinal samplewas374. These datawere collected between 2012
182and 2013.
183All enrolled subjects provided informed consent at each visit, or for
184minors informed assent in addition to parental or guardian consent.
185The Institutional Review Boards of the University of Pennsylvania and
186Children's Hospital of Philadelphia approved all procedures.
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