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21An increasing number of neuroimaging studies have suggested that the fluctuations of low-frequency resting-
22state functional connectivity (FC) are not noise but are instead linked to the shift between distinct cognitive
23states. However, there is very limited knowledge about whether and how the fluctuations of FC at rest are influ-
24enced by long-term training and experience. Here, we investigated how the dynamics of resting-state FC are
25linked to driving behavior by comparing 20 licensed taxi drivers with 20 healthy non-drivers using a sliding
26window approach. We found that the driving experience could be effectively decoded with 90% (p b 0.001) ac-
27curacy by the amplitude of low-frequency fluctuations in some specific connections, based on a multivariate
28pattern analysis technique. Interestingly, themajority of these connections fell within a set of distributed regions
29named “the vigilance network”. Moreover, the decreased amplitude of the FC fluctuations within the vigilance
30network in the drivers was negatively correlated with the number of years that they had driven a taxi. Further-
31more, temporally quasi-stable functional connectivity segmentation revealed significant differences between the
32drivers and non-drivers in the dwell time of specific vigilance-related transient brain states, although the brain's
33repertoire of functional states was preserved. Overall, these results suggested a significant link between the
34changes in the time-dependent aspects of resting-state FC within the vigilance network and long-term driving
35experiences. The results not only improve our understanding of how the brain supports driving behavior but
36also shed new light on the relationship between the dynamics of functional brain networks and individual
37behaviors.

38 © 2015 Published by Elsevier Inc.
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43 1. Introduction

44 One fundamental issue in cognitive neurosciences concerns how the
45 neural activity of the brain is linked to individual behaviors and further
46 influenced by extensive training or recent experiences. Intrinsic connec-
47 tivity networks (ICNs), arising from spontaneous low-frequency
48 oscillations of resting-state brains, have been suggested to reflect
49 the underlying functional organization principles in human brains
50 (Damoiseaux et al., 2006; Honey et al., 2009; Sporns, 2014). More
51 importantly, it has been suggested that the resting-state functional
52 connectivity (FC) in some specific regions is modulated by individual
53 behaviors (Hampson et al., 2006), extensive learning (Albert et al.,
54 2009; Tung et al., 2013), experiences (Jeong et al., 2006; Orr et al.,
55 2014), and diseases (Shen et al., 2010). A common assumption used in
56 these studies is the temporal stationarity of FC, where the FC is
57 measured over the entire scan (with a typical duration of 5–10 min).
58 This assumption provides a simple and convenient framework for us

59to examine large-scale brain networks and explore the correlation
60between functional and structural connectivity (Honey et al., 2009).
61However, a growing body of recent evidence has suggested that the
62FC of the brain at rest is not static but exhibits complex spontaneous
63spatiotemporal dynamics with intermittent fluctuations in the connec-
64tivity patterns (Calhoun et al., 2014; Chang andGlover, 2010; Hutchison
65et al., 2013). The low-frequency fluctuations in FC, which could be
66identified as multiple discrete, reproducible patterns (Allen et al.,
672014; Hutchison and Morton, 2015; Yang et al., 2014), have been sug-
68gested to be attributed to neural activity, to some extent, and have
69been linked to changes in cognitive or vigilance states (Betti et al.,
702013; Thompson et al., 2013; Wilson et al., 2015). Additionally, some
71recent reports on disease-related alterations in dynamic FC suggested
72that the temporal features of FC could serve as a disease biomarker
73(Jones et al., 2012; Shen et al., 2014). This temporal variability of
74functional connectivity can even be used to predict an individual's
75behavior. For example, the individual differences in the variability of
76functional connectivity exhibit a significant correlation with the
77tendency to attend to pain (Kucyi et al., 2013) and relate to the degree
78to which a subject is mind-wandering away from a sensory stimulus
79(Kucyi and Davis, 2014). In addition, this temporal variability of
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80 functional connectivity has been empirically demonstrated to be
81 dependent on the structural topology (Shen et al., 2015). These results
82 support the hypothesis that functional network activity on a scale of
83 seconds may contain meaningful information about cognition that
84 may be lost when longer time scales or even entire scans are used.
85 Moreover, the relationship between functional networks and behavior
86 can be better understood using shorter time windows (Thompson
87 et al., 2013). Hence, explorations of the nature of dynamic connectivity
88 and its relationship with individual behaviors have important implica-
89 tions for a more comprehensive understanding of the large-scale
90 functional organization in human brains.
91 To date, however, there is very limited knowledge about how exten-
92 sive training or experience is associated with the dynamics in resting-
93 state FC. On a shorter time scale, the activity of resting-state human
94 brains could be clustered into multiple reproducible and transient
95 patterns of connectivity states using a sliding-window approach
96 (Allen et al., 2014); furthermore, the spatiotemporal fluctuation of
97 functional networks reflects a dynamic switch between different FC
98 states. This finding also suggests that the average spatial pattern of FC
99 might not actually resemble a transient state during scanning
100 (Hutchison et al., 2013; Kiviniemi et al., 2011). More importantly, the
101 spatiotemporal properties of these reproducible and transient states
102 on a finer time scale could provide us with some new cues about how
103 the brain supports behavior. Thus, it appears important to investigate
104 the potential link between individual behaviors and the dynamic
105 properties of FC because the intrinsic temporal dynamics may be the
106 basis for an individual's behavior.
107 In the present study, we sought to investigate the association
108 between temporal variability of dynamic FC and driving behaviors,
109 based on the resting-state fMRI data from 20 licensed taxi drivers and
110 20 non-drivers. All of the chosen taxi drivers had a consistent level of
111 driving in the environment, i.e., the everyday working hours of the
112 taxi drivers were approximately the same (approximately 8 h a day).
113 Thus, it can be assumed that the number of years as a taxi driver is pro-
114 portional to the amount of time that our subjects consistently spent
115 performing driving behaviors. Neuroimaging studies have revealed
116 that driving behavior recruits multiple cognitive elements (Calhoun
117 et al., 2002; Chuang et al., 2014; He et al., 2012). Our recent work also
118 demonstrated that driving behavior altered the functional connectivity
119 between the cognitive and sensory ICNs and that the strength of specific
120 connections between the left fronto-parietal and primary visual
121 network was significantly correlated with the number of years as a
122 taxi driver (Wang et al., 2015). Here, we extend these findings to
123 dynamic functional connectivity by hypothesizing that the temporal
124 features of some functional connections were likely to decode or
125 support the decoding of an individual's driving skill. First, we used the
126 160 previously defined regions of interests (ROIs) (Dosenbach et al.,
127 2010) to construct dynamic graphical representations of brain connec-
128 tivity within a sliding-time window for each subject. The amplitude of
129 the low-frequency fluctuation of FC (ALFF-FC) was then used to
130 measure the temporal variability of sliced functional connections.
131 Second, using multivariate pattern analysis (MVPA), we identified the
132 functional connections with changes in variability that were the most
133 reliably different between taxi drivers and non-drivers. Finally, the
134 functional connectivity configurations within the sliding windows
135 were temporally divided into quasi-stable states (FC states) via a
136 clustering approach. We also computed the average dwell times in
137 each state, which is defined by the amount of time spent in select
138 functional states. The categories and dwell time of these FC states
139 were further compared between the taxi drivers and non-drivers.
140 In particular, we are interested in the changes in functional connec-
141 tions within some specific regions related to vigilance, known as “the
142 vigilance network”. As a fundamental component of attention, vigilance
143 is the ability to sustain attention over prolonged periods of time.
144 Vigilance is crucial in driving, where humans must continuously
145 monitor and react to rare signals while ignoring irrelevant stimuli.

146Neuroimaging studies have suggested that a widespread network of
147regions, including the lateral and medial frontal areas, temporal areas,
148cuneus and precuneus, insular cortices, and some subcortical regions,
149engages in vigilance (Breckel et al., 2011). Safe driving requires the
150ability to concentrate one's attention to various visual or auditory
151events, to remain vigilant to any dangerous events that potentially
152threaten safe driving safety, and to make quick cognitive decisions in a
153complex environment. Thus, we speculate that the long-term driving
154experience of taxi drivers may alter the temporal features of the
155functional connections related to vigilance, which likely will provide
156some insights into the underlying neural substrates of driving behavior.
157We will test this hypothesis as described below.

1582. Materials and methods

1592.1. Participants and fMRI data acquisition

160Forty right-handed subjects (20 licensed taxi drivers and 20 non-
161drivers)were included in this study. All of the participants were recruit-
162ed in Chongqing City, China. The groups of drivers and non-drivers were
163matched for age, sex, and education level (Table 1). None of the subjects
164had major head trauma, alcohol or drug dependence, or any neurologi-
165cal disorder. The licensed drivers in this study drive approximately 8 h
166per day. The mean driving time of the drivers is 11.6 years (range 2–
16716 years). The subjects of the control group did not have any driving
168experience, and they traveled by foot or by bus. The subjects in this
169study were tested with the ethical approval of the Institutional Review
170Board of Southwest University.
171Each subject was instructed to remain awake with their eyes closed
172and not think of anything in particular during an 8-min resting-state
173scan with an echo-planar imaging (EPI) sequence. All of the subjects
174reported that they remained awake for the duration of the experiment.
175Resting-state fMRI data were collected on a SIEMENS TRIO 3-T MRI
176scanner in the Key Laboratory of Cognition and Personality (Southwest
177University), Ministry of Education, China. The imaging parameters
178were listed as follows: TR = 2000 ms, TE = 30 ms, number of axial
179slices = 32, slice thickness = 3.0 mm, flip angle = 90°, FOV =
180200 × 200 mm2, and in-plane resolution = 64 × 64. For each subject,
181240 volumes were obtained.

1822.2. Data preprocessing

183The resting-state functional images were preprocessed using the
184statistical parametric mapping software package SPM8 (http://www.
185fil.ion.ucl.ac.uk/spm). First, the initial 10 volumes of each subject were
186discarded due tomagnetic saturation effects. The sliding time correction
187per volume, head motion correction per run, spatial normalization,
188spatial smoothing, linear detrending, and temporal filtering (0.01–
1890.08 Hz) were performed in succession. For motion correction, each
190volume was resliced to the first volume within a run, and the six head
191motion parameters were estimated. For spatial normalization, the func-
192tional images were registered into standard templates on the Montreal
193Neurological Institute (MNI) space and resampled to a 3 mm isotropic.
194The spatial smoothing was performed with a Gaussian filter kernel of
1956 mm full-width half-maximum (FWHM). The linear detrending
196preprocessing was to remove the linear signal drift. The final step of

t1:1Table 1
t1:2The characteristics of the participants recruited in this study.

t1:3Variable Drivers Non-drivers

t1:4Sample size 20 20
t1:5Age (years) 39.8 ± 5.5 41.1 ± 5.0
t1:6Sex (male/female) 19/1 18/2
t1:7Education (years) 9.3 ± 1.6 9.0 ± 1.4
t1:8Years of taxi driving 4.6 ± 3.5
t1:9Years of total driving 11.6 ± 4.9

2 H. Shen et al. / NeuroImage xxx (2015) xxx–xxx

Please cite this article as: Shen, H., et al., Changes in functional connectivity dynamics associated with vigilance network in taxi drivers,
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.09.010

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://dx.doi.org/10.1016/j.neuroimage.2015.09.010


Download English Version:

https://daneshyari.com/en/article/6024285

Download Persian Version:

https://daneshyari.com/article/6024285

Daneshyari.com

https://daneshyari.com/en/article/6024285
https://daneshyari.com/article/6024285
https://daneshyari.com

