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Bymodeling axons as thin cylinders, it is shown that the inverse Funk transform of the diffusionMRI (dMRI) sig-
nal intensity obtained on a spherical shell in q-space gives an estimate for a fiber orientation density function
(fODF), where the accuracy improves with increasing b-value provided the signal-to-noise ratio is sufficient.
The method is similar to q-ball imaging, except that the Funk transform of q-ball imaging is replaced by its in-
verse. We call this new approach fiber ball imaging. The fiber ball method is demonstrated for healthy human
brain, and fODF estimates are compared todiffusion orientation distribution function (dODF) approximations ob-
tained with q-ball imaging. The fODFs are seen to have sharper features than the dODFs, reflecting an enhance-
ment of the higher degree angular frequencies. The inverse Funk transform of the dMRI signal intensity data
provides a simple and direct method of estimating a fODF. In addition, fiber ball imaging leads to an estimate
for the ratio of the fraction of MRI visible water confined to the intra-axonal space divided by the square root
of the intra-axonal diffusivity. This technique may be useful for white matter fiber tractography, as well as
other types of microstructural modeling of brain tissue.

© 2015 Elsevier Inc. All rights reserved.

Introduction

For strong diffusion weightings (i.e., high b-values), the angular de-
pendence of the diffusionMRI (dMRI) signal intensity inwhitematter is
sensitive to the complex geometries associatedwith intersecting axonal
fiber bundles (Tuch et al., 2002). High-angular-resolution diffusion
imaging (HARDI) methods exploit this property to estimate either a
diffusion orientation distribution function (dODF) or a fiber orientation
density (or distribution) function (fODF) that can be used, for example,
as the basis for white matter fiber tractography (Lazar, 2010; Tournier
et al., 2011). Q-ball imaging is a particularly elegant HARDI method in
which a dODF is derived by taking a Funk transform of the dMRI signal
intensity on a spherical shell in q-space (Descoteaux et al., 2007; Hess
et al., 2006; Tuch, 2004; Tuch et al., 2003). The Funk transform (Bailey
et al., 2003) is a straightforward linear operation that avoids the need
for detailed modeling of the microstructure or for nonlinear numerical
fitting procedures.

In this paper, we show that the inverse Funk transform of the dMRI
signal provides an estimate of a fODF. The difference between a dODF
and a fODF is that a dODF reflects the angular dependence of the

water diffusion dynamics, while a fODF is meant to describe the angular
dependence of the axonal fiber bundles. Typically, fODFs are based on a
detailed tissue model for white matter microstructure, with themodel-
ing parameters being determined by fitting to dMRI data (Anderson,
2005; Tournier et al., 2004, 2007). Such approaches have been highly
successful (Wilkins et al., 2015), although the necessary calculations
can be challenging (Parker et al., 2013). The fiber ball method described
here may offer advantages in terms of simplicity and in being based on
relatively mild assumptions.

Thephysical picture underlyingfiber ball imaging is that theMRI vis-
ible water in white matter can be divided into two non-exchanging
pools, one corresponding to water inside the axons and one to water
outside the axons. This idealization has been widely used with dMRI
for tissue modeling (Assaf et al., 2004; Fieremans et al., 2011;
Jespersen et al., 2007; Panagiotaki et al., 2009, 2012; Zhang et al.,
2012) and is supported by q-space imaging experiments (Assaf and
Cohen, 2000). The extra-axonalwater is assumed to be relativelymobile
so that the dMRI signal from this pool decreases exponentially with in-
creasing b-value. However, the signal from the intra-axonal water pool
has a slower drop-off due to its diffusion being strongly restricted by the
axon cell membranes. For this reason, the intra-axonal water becomes
the dominant source of signal for large b-values, which enables proper-
ties of the intra-axonal space to be more easily calculated.

The primary purpose of this article is to describe the theory for
fiber ball imaging and to contrast it with the closely related q-ball
imaging method. In particular, we derive the inverse Funk transform
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relationship between the fODF and the dMRI signal intensity in the large
b-value limit. We also consider a correction method that may improve
the accuracy of the fODF for finite b-values. Finally, we present prelim-
inary results for human brain obtained at 3 T with a b-value of 4000 s/
mm2.

Theory

Assumptions

Fiber ball imaging is based on several general assumptions about
water diffusion andwhitemattermicrostructure. These are very similar
to ones that have been used in prior studies and are commonly consid-
ered to be plausible idealizations, although definitive validation has so
far not been fully achieved. Our key assumptions are:

1. Thewater that contributes substantially to the dMRI signal can be di-
vided into two pools, corresponding to intra-axonal and extra-axonal
water. This excludes the water within myelin, which makes a rela-
tively small contribution to the signal because of its short T2 relaxa-
tion time (Stanisz et al., 1999).

2. The exchange time between the two water pools is large in com-
parison to the diffusion time of the dMRI sequence so that water
exchange can be neglected. Water exchange times in white
matter have been measured to be about 1 s (Nilsson et al., 2013)
which is indeed long compared to the typical dMRI diffusion
times. This assumption substantially simplifies the diffusion
dynamics (Fieremans et al., 2010).

3. The diffusivities of the extra-axonal water compartments exceed
some minimum value, De,min, for all diffusion directions. This is
what we mean by the extra-axonal water being relatively mobile.

4. The axons can be regarded as thin, straight cylinders. This requires
that the q-vector be sufficiently small so that the dMRI signal is not
sensitive to the internal geometry of the axons. More specifically,
we must have qa bb 1, where q is the magnitude of the q-vector
and a is a typical axon radius. In terms of the b-value, this condition
can be written as ba2 bb Δ, where b is the b-value and Δ is the diffu-
sion time. For a diffusion time of 50 ms and an axon radius of 2 μm
(Aboitiz et al., 1992), this gives the condition b bb 12, 500 s/mm2.
In addition, the radius of curvature of the axons should be less than
the typical diffusion length along the axis of the cylinders so that
the straight cylinder approximation is justified. If the radius of curva-
ture is rc and the intrinsic intra-axonal diffusivity is Da, this means
that

ffiffiffiffiffiffiffiffiffiffiffiffi
2DaΔ

p
bb rc; for Δ = 50 ms and Da = 1.0 μm2/ms (Fieremans

et al., 2011), one then has 10 μm bb rc.
5. The b-value is sufficiently large so that bDe,min NN 1.When this is true,

the contribution of the extra-axonal water to the dMRI signal can be
neglected due to its exponential decrease with increasing b-value.
The prior study of Fieremans and coworkers (Fieremans et al.,
2011) found that the extra-axonal diffusivity was typically greater
than 0.5 μm2/ms, which suggests that we need b NN 2000 s/mm2.

6. All the axons within any given voxel have the same intrinsic intra-
axonal diffusivity, Da, although this may vary between voxels, and
bDa NN 1. This assumption also sets a lower limit on the required b-
value, which will depend on Da. For Da = 1.0 μm2/ms, we must
then have b NN 1000 s/mm2.

Inverse Funk transform expression for fODF

With the above assumptions, thedMRI signal intensity inwhitemat-
ter takes the form

S nð Þ ¼ S0

Z
d3uf uð Þ exp −bDa n � uð Þ2

h i
δ uj j−1ð Þ; ð1Þ

where S0 is the signal without diffusion weighting, n is the diffusion-
encoding direction (with |n| = 1), δ is the Dirac delta function, and f is

the fODF. The fODF is assumed to be independent of the magnitude of
u and is normalized so that

f a ¼
Z

d3uf uð Þδ uj j−1ð Þ; ð2Þ

where fa is the fraction of dMRI visible water for the axonal compart-
ment. Without loss of generality, we can also assume, the reflection
symmetry property

f uð Þ ¼ f −uð Þ : ð3Þ

This follows from the fact that our postulated cylindrical geometry for
the axons is invariant with respect to a point reflection through the
origin.

The Dirac delta function has the representation

δ xð Þ ¼ lim
ε→0

1ffiffiffiffiffiffiffiffi
2πε

p exp
−x2

2ε

� �
: ð4Þ

This allows us to write

S nð Þ≈S0

ffiffiffiffiffiffiffiffi
π

bDa

r Z
d3uf uð Þδ n � uð Þ δ uj j−1ð Þ; ð5Þ

in the limit that bDa NN 1 which holds according to Assumption 6. The
integral in Eq. (5) is precisely the Funk transform of the fODF (Tuch,
2004). Thus we have

S nð Þ≈S0

ffiffiffiffiffiffiffiffi
π

bDa

r
T F f ;nð Þ; ð6Þ

with Tf indicating the Funk transform. Note that the signal decreases as

1=
ffiffiffi
b

p
, which is much slower than the exponential decrease assumed for

the extra-axonal water pool.
The signal calculated from Eq. (6) is automatically invariant under

the reflection symmetry S(n)= S(−n), which is indeed a generic prop-
erty of the dMRI signal for an ideal experiment (e.g., if background gra-
dients are negligible). Since the Funk transform is invertible for
functions with reflection symmetry (Bailey et al., 2003), the fODF can
be estimated by using the formula

f nð Þ≈
ffiffiffiffiffiffiffiffi
bDa

π

r
T−1
F S=S0;nð Þ; ð7Þ

where TF
−1 signifies the inverse Funk transform.

The Funk transform and its inverse aremost conveniently calculated
by using spherical harmonic representations for S and f. This is because
the spherical harmonics, Ylm, are the eigenfunctions of the Funk trans-
form (Descoteaux et al., 2007; Hess et al., 2006). Specifically,

T F Ym
l ;n

� � ¼ 2πPl 0ð ÞYm
l θ;ϕð Þ; ð8Þ

where (θ,ϕ) are the spherical angles forn and Pl is the Legendre polyno-
mial. This result allows Eq. (7) to be recast as

f nð Þ≈ 1
2π

ffiffiffiffiffiffiffiffi
bDa

π

r X∞
l¼0

1
P2l 0ð Þ

X2l
m¼−2l

am2lY
m
2l θ;ϕð Þ: ð9Þ

Here the parameters alm are the spherical harmonic expansion coeffi-
cients for S/S0 so that

S nð Þ ¼ S0
X∞
l¼0

Xl
m¼−l

aml Y
m
l θ;ϕð Þ: ð10Þ

Because of reflection symmetry for S, the coefficients alm vanishwhenev-
er the degree l is an odd integer, and the sum in Eq. (9) is therefore only
taken over even degrees of Ylm. The result of Eq. (9) is the key expression
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