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The human connectome represents a networkmap of the brain'swiring diagram and the pattern intowhich its con-
nections are organized is thought to play an important role in cognitive function. The generative rules that shape the
topology of the human connectome remain incompletely understood. Earlier work in model organisms has sug-
gested thatwiring rules based on geometric relationships (distance) can account formany but likely not all topolog-
ical features. Here we systematically explore a family of generative models of the human connectome that yield
synthetic networks designed according to differentwiring rules combining geometric and a broad range of topolog-
ical factors.We find that a combination of geometric constraintswith a homophilic attachmentmechanism can cre-
ate synthetic networks that closely match many topological characteristics of individual human connectomes,
including features that were not included in the optimization of the generative model itself. We use these models
to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, sug-
gesting a rebalancing of the generative factors underlying the connectome across the lifespan.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

The human connectome represents a network map of the brain in
which regions and inter-regional connections are rendered into the
nodes and edges of a graph. In this format, the connectome can be ana-
lyzed using tools fromnetwork science and graph theory (Bullmore and
Sporns, 2009; Sporns, 2014). Network analyses of the connectome have
revealed a host of attributes that are likely essential for healthy brain
function, including hierarchical and multi-scale modules (Bassett et
al., 2010; Betzel et al., 2013), highly connected, highly central hubs
(Hagmann et al., 2008; van den Heuvel and Sporns, 2013), and a rich
club of mutually connected, high-degree regions (van den Heuvel and
Sporns, 2011). Additionally, the connectome's topology (the pattern in
which its connections are configured) is thought to play an important
role in shaping task-evoked and spontaneous brain activity
(Hermundstad et al., 2013; Goñi et al., 2014; Mišić et al., 2015).

The connectome is an example of a physical network whose nodes
and edges are embedded in Euclidean space (Barthélemy, 2011). Conse-
quently, the formation of connections carries a material and metabolic
cost that increases with connection length (Bullmore and Sporns,
2012). To remain within the limits of viability, the human connectome
maintains disproportionally many short-range (i.e. low cost) connec-
tions. Despite the importance of conserving connection cost, previous
work in model organisms has shown that wiring minimization alone
cannot account for all the connectome's topological features (Kaiser
and Hilgetag, 2006; Costa et al., 2007a). Rather, connectome networks
strike a balance wherein the formation of costly features like hubs and
rich clubs trades off with a drive to reduce the total cost of wiring.

The conditions that allow this tradeoff to emerge are the central
topic of this paper, and one thatwe explore using generativemodels ap-
plied to human connectome data obtained from individual participants.
In the context of complex networks, generative modeling refers to a set
of approaches for creating synthetic networkswith properties similar to
those of real-world networks. One example among many (Watts and
Strogatz, 1998; Kumar et al., 2000; Solé et al., 2002; Vázquez et al.,
2003; Dall and Christensen, 2002; Middendorf et al., 2005) is the
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preferential attachment model (Barabási and Albert, 1999), which gen-
erates synthetic networks with heavy-tailed degree distributions simi-
lar to those observed in many real-world socio-technical networks.

In this report we build upon and expand the tradition of generative
models for brain networks by fitting many different generative models
to single-subject human connectome data and comparing models in
terms of their overall performance. The models we investigate combine
two distinctmechanisms for network growth: 1) geometricwiring rules
which influence connection formation by favoring either shorter or lon-
ger connections and 2) non-geometric rules that ignore the distance be-
tween two regions and, instead, form connections on the basis of some
shared topological relationship. Some of themodels we consider imple-
ment rules that mimic well-established growth mechanisms like geo-
metric random graphs, preferential attachment, degree assortativity,
and homophilic attraction. In all cases, our aim is to discover wiring
rules that produce synthetic networks with properties similar to those
of observed connectomes.

To this end, we tuned our models' parameters to generate realistic
synthetic networks. We found that the best-fitting model was one
that penalized the formation of longer connections while increasing
the likelihood of forming connections between brain regions with sim-
ilar connectivity profiles (homophily). We cross-validated this result,
comparing synthetic and observed connectomes along measures other
than those used in the optimization process and using three different
datasets. Finally, we fit the optimal generative model to data from a
lifespan study (with ages ranging from 7 to 85 years) and found that
the penalty on long-distance connections weakened monotonically
with age. Older subjects' connectomes were fit poorly compared to
those of younger individuals, a result driven primarily by an inability
to match edge length and clustering coefficient distributions. This sug-
gests that the human connectome undergoes a characteristic reorgani-
zation across the lifespan.

Methods

Data acquisition and processing

A total of N=40 healthy participants underwent anMRI session on
a 3-T Siemens Trio scannerwith a 32-channel head-coil. Themagnetiza-
tion-prepared rapid graident-echo (MPRAGE) sequence was 1 mm in-
plane resolution and 1.2 mm slice thickness. The DSI sequence included
128 diffusion-weighted volumes plus one reference b0 volume, maxi-
mum b-value of 8000 s · mm−2 and 2.2 × 2.2 × 3.0 mm voxel size.
The echo planar imaging (EPI) sequence was 3.3 mm in-plane resolu-
tion and 0.3 mm slice thickness with TR of 1920 ms. DSI and MPRAGE
data were processing using the Connectome Mapping Toolkit
(Daducci et al., 2012). Segmentation of gray and white matter was
based on MPRAGE volumes. The cerebral cortex was parcellated into
n = 219 ROIs (Cammoun et al., 2012), of which we retained the 108
comprising the right hemisphere. We enforced an average connectome
density of ρ≈ 10%, resulting in a streamline threshold of 27 streamlines
(i.e. a minimum of 27 streamlines must have connected two regions for
us to consider the presence of an anatomical connection). These same
data have been analyzed elsewhere (Avena-Koenigsberger et al., 2014;
Goñi et al., 2014; Betzel et al., 2013).

Generative algorithm

In this report we construct synthetic networks using a generative
model. The algorithm for producing synthetic networks is simple.
Starting with a sparse seed network (62 bi-directional edges that were
common across all 40 participants), edges were added one at a time
over a series of steps until M total connections were placed (where
M = 576 ± 57 connections across subjects). At each step we allow for
the possibility that any pair of unconnected nodes, u and v, will be con-
nected. Connections are formed probabilistically, where the relative

probability of connection formation is given by:

P u; vð Þ ¼ E u; vð Þη � K u; vð Þγ : ð1Þ

In this expression E(u, v) denotes the Euclidean distance between
brain regionsu and v. The exponentη controls the characteristic connec-
tion length. When η b 0, short-range connections are favored, while
η N 0 increases the probability of forming longer connections. The
other term, K(u, v), represents an arbitrary non-geometric relationship
between nodes u and v and the value of γ scales its relative importance.
The precise definition of K(u, v) is flexible and can be varied to realize
different wiring rules. For instance, setting K(u, v) = kukv and γ N 0 im-
plements a variant of preferential attachment, wherein higher degree
nodes are more likely to become connected. Alternative definitions
can be used to implement rules such as degree assortativity (e.g.
K(u, v) = |ku − kv|, where nodes with similar/dissimilar numbers of
connections preferentially connect to one another) or homophily (e.g.
K(u, v) = ∑wauwawv where connections form between nodes with
more or fewer common neighbors). In Table 1 we show a complete
list of all non-geometricwiring rules.We limit our analysis to generative
models whose wiring rules include only two components, though we
could accommodate more components, in principle. We impose this
limit in an effort to focus on highly simple, idealized models of network
growth.

To prevent cases where P(u, v) is undefined (e.g. if K(u, v) = 0 and
γ b 0 then P(u, v) = ∞, we add ∈ = 10−6 to each K(u, v) before raising
it to the power, γ). Over the course of the generative process new edges
are added to the synthetic networkwhich necessarily changes the value
of K(u, v). Accordingly, at each step we update K(u, v) and the corre-
sponding changes to P(u, v). If, at any step, the edge {u, v} is added to
the synthetic network, then P(u, v) = 0 for all subsequent steps. See
Fig. S14 for an illustration of the model using a toy network model.

In our model we use Euclidean distance as a proxy for the cost of the
connection between brain regions u and v. It is worth noting that there
are alternative measures for quantifying the cost or spatial relatedness
of node pairs, including measures derived from the network's spatial
embedding (Friedman et al., 2015). Another candidate measure of, per-
haps, greater neurobiological interest is fiber length, which measures
the actual curved trajectories of white-matter tracts rather than the
straight-line (Euclidean) distance between brain region centroids.
While Euclidean distance and fiber length are correlated with one an-
other, there are many instances where the fiber length of a connection
is much longer than what would be expected given Euclidean distance.
A more detailed discussion of this topic can be found in the Appendix
(Figs. S10 and S11).

Evaluating synthetic network fitness

To assess the fitness of a synthetic network we calculated its energy,
which measures how dissimilar a synthetic network is to the observed
connectome. Intuitively, if the two networks have many properties in
common, then the synthetic network's energy is small. Specifically, a
synthetic network's energy was defined as:

E ¼ max KSk;KSc;KSb;KSeð Þ ð2Þ

where the arguments are Kolmogorov–Smirnov statisticswhich quanti-
fy the discrepancy between the synthetic and observed connectomes in
terms of their degree (k), clustering (c), betweenness centrality (b), and
edge length (e) distributions. Here, edge length refers to the Euclidean
distance between the centroids of two connected brain regions. By tak-
ing themaximum of the four statistics we consider a synthetic network
to be only as fit as its greatest discrepancy.
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