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Deciphering the content of continuous speech is a challenging task performeddaily by the human brain. Here,we
testedwhether activity of single cells in auditory cortex could be used to support such a task.We recorded neural
activity from auditory cortex of two neurosurgical patients while presented with a short video segment contain-
ing speech. Population spiking activity (~20 cells per patient) allowed detection of word onset and decoding the
identity of perceived words with significantly high accuracy levels. Oscillation phase of local field potentials
(8–12 Hz) also allowed decoding word identity although with lower accuracy levels. Our results provide evi-
dence that the spiking activity of a relatively small population of cells in human primary auditory cortex contains
significant information for classification of words in ongoing speech. Given previous evidence for overlapping
neural representation during speech perception and production, this may have implications for developing
brain–machine interfaces for patients with deficits in speech production.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The ability to correctly discriminate speech is crucial for successful
social interaction. To comprehend auditory content, the brain has to
decipher a variety of sounds in real time. Previous electrophysiological
studies in animals have successfully used spiking activity in auditory
cortex to classify different sounds including species-specific vocaliza-
tions (e.g., grasshoppers (Machens et al., 2003); song birds (Grace
et al., 2003; Narayan et al., 2006); cats (Gehr et al., 2000); monkeys
(Russ et al., 2008)), or vocalizations across species (e.g., marmoset
calls in ferrets (Schnupp et al., 2006); marmoset calls in cat (Wang
and Kadia, 2001); bird chirps in cats (Chechik et al., 2006)).

In humans, discrimination of speech content has been demonstrated
using various non-invasive techniques. Functional magnetic resonance
imaging (fMRI) studies showed cortical representation of speech
based on spatial activation patterns in Heschl's gyrus (Formisano et al.,
2008; Wessinger et al., 2001; Binder et al., 2000). Other studies using
Magnetoencephalography (MEG) found that the degree of correspon-
dence between the temporal envelope of the signal in auditory cortex
and stimulus soundwave co-varies with the level of speech comprehen-
sion (Ahissar et al., 2001). Furthermore, it has been found that the phase
of the MEG signal in the theta-band (4–8 Hz) reliably discriminates
spoken sentences (Luo and Poeppel, 2007).

Invasive studies using Electrocorticography (ECoG) have shown that
cortical responses in the superior temporal gyrus (STG) track the enve-
lope of attended speech streams (Zion Golumbic et al., 2013;Mesgarani
and Chang, 2012; Canolty et al., 2007). Others found that the STG is
robustly organized according to sensitivity to basic phonetic items
(Mesgarani et al., 2014; Chang et al., 2010) and that slow and interme-
diate temporal fluctuations corresponding to syllable rate can be recon-
structed based on power in high-gamma frequency band (Pasley et al.,
2012). It has also been shown that the ECoG signal from electrodes im-
planted in Heschl's gyrus (HG) follows the temporal speech envelope
over a wide range of speaking rates (Nourski et al., 2009) and can be
used to facilitate discrimination of voiced from unvoiced phonemes
(Steinschneider et al., 2005). Despite this comprehensive research,
the relative contribution of spiking activity and optimal features of
the rich LFP signal in auditory cortex in decoding perceived words
from ongoing speech is not known.

It has been previously shown that activity in auditory cortex during
passive perception overlaps with activity during overt (Zheng et al.,
2010; Flinker et al., 2011; Cogan et al., 2014) and covert speech
(Buchsbaum et al., 2001; Pei et al., 2011; Martin et al., 2014). Under
these circumstances, characterizing the activity patterns of single cells
during passive perception may also have important implications for
comprehending the process of speech production (Bouchard et al.,
2013).

In the current study, we recorded spiking activity and local field po-
tentials from the putative primary auditory cortex of two neurosurgical
patients while they were presented with an audio–visual stimulus con-
taining on-going speechmonologue.We used a support vectormachine
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(SVM) classifier in order to discriminate 6 different words and detect
their onset using information from spiking activity. We also examined
local field potentials (LFPs) and found that across various features,
phase in the low frequency band (8–12 Hz) was best for decoding
words, although performance was much lower compared with using
population spiking activity. Combining information from spikes and
low frequency LFP phase improved classification performance com-
pared to using data from either signal alone.

Materials and methods

Patients and electrophysiological recording

Data was collected from two patients (21 years old male and
19 years old female) with pharmacologically intractable epilepsy,
implanted with intracranial depth electrodes to identify seizure focus
for potential surgical treatment (Mukamel and Fried, 2012). Electrode lo-
cationwas based solely on clinical criteria. Each electrode terminated in a
set of nine 40-μm platinum–iridium microwires (Fried et al., 1999) —
eight active recording wires, referenced to the ninth. Signals from these
microwires were recorded at 28 kHz for the first patient and 30 kHz
for the second patient using a 64-channel acquisition system. Before
surgery each patient underwent placement of a stereotactic headframe,
and then a detailedMR imagewas obtained using a spoiled-gradient se-
quence, followed by cerebral angiography. Both anatomical and angiog-
raphy images were transmitted to a workstation in the operating room,
and surgical planning was then performed, with selection of appropri-
ate temporal and extra-temporal targets and appropriate trajectories
based on clinical criteria. To verify electrode position, CT scans following
electrode implantation were co-registered to the preoperative MRI
using Vitrea® (Vital Images Inc.). The patients provided written in-
formed consent to participate in the experiments. The study was ap-
proved by and conformed to the guidelines of the Medical Institutional
Review Board at UCLA. Data collected from the first patient was previ-
ously reported (Mukamel et al., 2011; Bitterman et al., 2008; Nir et al.,
2007).

Stimuli and behavioral task

Patients observed nine repetitions of a 17 s long audio–visual clip at
their bedside. The clip was taken from the movie “The Good, The Bad,
and The Ugly” (starting from minutes 44:31 in the original film) and
is comprised mainly of speech monologue containing 23 words and
environmental sounds. The patients' task was to follow the plot.

Data preprocessing

To detect spiking activity, the data was band-pass filtered offline
between 300 and 3000 Hz and spike sorting was performed using
WaveClus (Quiroga et al., 2004), similar to previous publications
(Quiroga et al., 2005). This process yields for each detected neuron a
vector of time stamps (1 ms resolution) during which spikes occurred.

We assessed whether the spiking activity of the recorded neurons is
evoked by different spoken words — ‘Now’, ‘Tight’, ‘Right’, ‘Neck’, ‘Pig’
and ‘Rope’, embedded in the speech sequence. These words were
chosen since they fit within a time window of 250 ms without overlap-
ping with adjacent words. The spike train of each neuron during the
250 ms time window aligned to specific word onset was extracted
and spike counts were calculated in twenty, 12.5 ms consecutive time
bins. In order to assess responsiveness of each neuron to the various
stimuli, we examined the degree of repeated spike patterns across trials.
To this end the binned signals were averaged across odd and even trials
separately and the Pearson correlation coefficient between the two av-
erages was computed. Cells exhibiting correlation coefficients greater
than 0.45 (lowest statistically significant correlation level when using

20 bins) for at least one word were considered responsive and taken
for further analysis.

Word classification

We used a multi-class support vector machine to discriminate
among the six different words within the speech sequence. We used a
Matlab implementation of a SVM classifier (Chang and Lin, 2011; soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm) and least
squares as a cost function. Accuracy levels were compared with a null
distribution obtained by shuffling the labels of the data and performing
the same classification procedure as on the original data.

Spiking activity from time windows corresponding to individual
words was binned in consecutive non-overlapping temporal windows.
Thus, the data of each word consisted of 9 matrices (one for each trial).
The value in each matrix cell i,j corresponded to the spike count of neu-
ron i, in time bin j. During each classification iteration we performed a
standard “leave-one-out” procedure in which one matrix of each of the
sixwordswas randomly chosen as test data and the classifierwas trained
to discriminate the 6 words based on the remaining matrices. During
the test stage, the classifier assigned labels to left-out matrices (the trials
which it was not trained on) and its performancewas assessed. This pro-
cedure was iterated 500 times.

We estimated the optimal temporal resolution for classification by
varying the size of non-overlapping bins. Performance level of word
classification was assessed using different bin sizes as input to the clas-
sifier (either 25ms, 50ms, 125ms, or 250ms; corresponding to 10, 5, 2,
and 1 temporal bins respectively). Thus givenNneurons, the population
spike response representation of one word during one trial using, for
example, 50 ms bins is an N × 5 matrix of spike counts.

Detection of word onset

We also assessed whether we can detect the correct time segments
(250 ms) of each of the six word instances within the complete on-
going 17 s long audio–visual segment. We trained a binary classifier to
discriminate between word and non-word bins (see below) in order
to detect word onset. First, we set aside data from one trial (number
of neurons ×17,000 ms long population spike train) to be used later
as test set. For eachword, we extracted 250ms spike trains correspond-
ing to word onset from the remaining eight trials. These spike trains
were binned by calculating the spike count in five consecutive 50 ms
temporalwindows resulting in eightmatrices (one for each trial;matrix
size = number of neurons ×5) which were labeled ‘word’ bins. The
same processwas performedwith a randomly chosen time pointwithin
the 17-s long sequence. This resulted in another eight matrices which
were labeled as ‘non-word’ bins. These two sets of eight labeled matri-
ces were used to train a classifier to discriminate ‘word’ from ‘non-
word’ bins.

Next, we took the 17-s spike train that was set aside. Spiking activity
from the first timewindow of 250mswas taken and binned to five con-
secutive 50ms bins (similar to the procedure performedwith the train-
ing data). This matrix (number of neurons ×5) was used as test data to
the classifierwhich labeled it as either belonging to ‘word’ or ‘non-word’
bin (based on the mapping rule learned from the training data). In this
manner, the classification procedure yielded a label for each time bin.
This process was iterated in 10 ms increments (i.e., classifying spike
trains from time 10–260 ms in the following step and so on until the
final time bin 16,750–17,000 ms). This resulted in a vector (length =
1676) of ‘word’/‘non-word’ labels.

The entire process was iterated 500 times (each time using a differ-
ent randomly chosen time point to be used as ‘non-word’ bins during
training) and the percentage of ‘word bin’ labels assigned for each
time window across iterations was calculated. The window with the
maximal percentage was assigned as the classified time window of
word onset. We performed this analysis for each word separately
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