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In this paper, we consider voxel selection for functional Magnetic Resonance Imaging (fMRI) brain data with the
aim offinding amore complete set of probably correlated discriminative voxels, thus improving interpretation of
the discovered potential biomarkers. The main difficulty in doing this is an extremely high dimensional voxel
space and few training samples, resulting in unreliable feature selection. In order to deal with the difficulty,
stability selection has received a great deal of attention lately, especially due to its finite sample control of false
discoveries and transparent principle for choosing a proper amount of regularization. However, it fails to make
explicit use of the correlation property or structural information of these discriminative features and leads to
large false negative rates. In other words, many relevant but probably correlated discriminative voxels are
missed. Thus, we propose a new variant on stability selection “randomized structural sparsity”, which incorpo-
rates the idea of structural sparsity. Numerical experiments demonstrate that ourmethod can be superior in con-
trolling for false negatives while also keeping the control of false positives inherited from stability selection.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem statement

Decoding neuroimaging data, also called brain reading, is a kind of
pattern recognition that has led to impressive results, such as guessing
which image a subject is looking at from his brain activity (Haxby
et al., 2001), as well as in medical diagnosis, e.g., finding out whether
a person is a healthy control or a patient.

This pattern recognition typically consists of two important compo-
nents: feature selection and classifier design. While the predictive or
classification accuracy of these designed classifiers has received most
attention in most existing literature, feature selection is an even more
important goal inmany practical applications includingmedical diagno-
sis where selected voxels can be used as biomarker candidates (Guyon
and Elisseeff, 2003).

However, most traditional feature selectionmethods fail to discover
in a stable manner the “complete” discriminative features accurately.
They mainly aim to construct a concise classifier and they often select
only a minimum subset of features, ignoring those correlated or redun-
dant but informative features (Guyon and Elisseeff, 2003; Blum and
Langley, 1997). In addition, the stability of the selected features is

often ignored (Bühlmann and VanDe Geer, 2011; Cover, 1965), because
the inclusion of some noisy features or the exclusion of some informa-
tive features may not affect the prediction accuracy (Yu et al., 2008),
which is their main objective. Therefore, a large number of uninfor-
mative, noisy voxels that do not carry useful information about the
category label, could be included in the final feature detection results
(Langs et al., 2011), while some informative, possibly redundant
features might be missed.

In this paper, we focus on feature selection on functional MRI (fMRI)
data where each voxel is considered as a feature. These features are
often correlated or redundant. We focus on the “completeness” and
“stability” of feature selection, i.e. aim to discover as many as possible
informative but possibly redundant features accurately and stably, in
contrast to most of the existing methods which mainly aim to find a
subset of discriminative featureswhich are expected to be uncorrelated.
This way, potential biomarkers revealed by the discovered discrimina-
tive voxels, in both cognitive tasks and medical diagnoses are expected
to be more credible.

1.2. Advantages and limitations of sparse priors in multivariate neuroimaging
modeling

There are in general three main categories of supervised feature se-
lection algorithms: filters, embedded methods, and wrappers (Guyon
and Elisseeff, 2003). The filter methods usually separate feature section
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from classifier development. For example, Fisher Score (Duda et al.,
2000), is among the most representative algorithms in this category.
The wrapper methods use a predictive model to score feature subsets.
Each new subset is used to train a model, which is tested on a hold-
out set, and the features are scored according to their predictive
power. The embedded models perform feature selection during learn-
ing. In other words, they achieve model fitting and feature selection
simultaneously.

The following sparsity related feature selectionmodels are all typical
embedded methods, which we will mainly focus on in this paper.

In this paper, we consider commonly used supervised learning to
identify the discriminative brain voxels from given training fMRI data.

While the classification problem is considered most often, the
regression problem can be treated in a similar way. We consider the
following linear model.

y ¼ Xw þ � ð1Þ

where y∈ℝn × 1 is the binary classification information andX∈ℝn × p is
the given training fMRI data and w ∈ ℝp × 1 is the unknown weights
reflecting the degree of importance of each voxel. As a multivariate in-
verse inference problem, identification of discriminative voxels is
based on the values of the weight vectorw and their importance is pro-
portional to the absolute values of the components. Therefore, feature
selection is also called support identification in this context, because
the features corresponding to the nonzero w components are consid-
ered as the relevant features.

Considering that the common challenge in this field is the curse of
dimensionality p » n, we are focusing on sparsity-based voxel selection
methods, because sparsity is motivated by the prior knowledge that
the most discriminative voxels are only a small portion of the whole
brain voxels (Yamashita et al., 2008).

However, sparsity alone is not sufficient for making reasonable and
stable inferences. Plain sparse learning models often provide overly
sparse and hard-to-interpret solutions where the selected voxels are
often scattered (Rasmussen et al., 2012), though they might be useful
if a concise classifier is expected. Specifically, if there is a set of highly
correlated features, then only a small portion of representative voxels
are selected, resulting into a large false negative rate and a potential bio-
marker that is hard to trust.

In addition, let denote the support of the true sparse vector w as S
and the number of its nonzeros as ‘. For the success of finite sample re-
covery by the plain ‘1 norm regularizedmodel, ‘ should be smaller than
n. Let subsets of the columns of the design matrix X larger than ‘ must
be well conditioned. In particular, the design matrix XS should be suffi-
ciently well conditioned and should not be too correlated to the col-
umns of X corresponding to the noisy subspace XS (Varoquaux and
Alexandre Gramfort, 2012).

Thus we have to extend the plain sparse learning model to incorpo-
rate important structural features of brain imaging data, such as brain
segregation and integration, in order to achieve stable, reliable and
interpretable results.

1.3. Existing extensions of the plain sparse model

As mentioned above, two common hypotheses have been made for
fMRI data analysis: sparsity and compact structure. In sparsity, few rel-
evant and highly discriminative voxels are implied in the classification
task; in compact structure, relevant discriminative voxels are grouped
into several distributed clusters, and the voxels within a cluster have
similar behaviors and are, correspondingly, strongly correlated. Thus
making use of these two hypotheses is very important, and we will
review some state-of-the-art existing works in this direction.

Elastic net regression (Zou andHastie, 2005) tries tomake use of the
voxel correlation by adding a ‘2 regularization, also called the Tikhonov

regularization, to the classical ‘1 penalty (Ryali et al., 2012a) to dealwith
highly correlated features. Recently, other penalties have been added to
consider the correlated features besides the Tikhonov regularization
(Dubois et al., 2014). For example, both ‘1 penalization and Total-
Variation (TV) penalization are used simultaneously for voxel selection
(Gramfort et al., 2013), where the TV penalization is used to make
use of the assumption that the activations are spatially correlated
and the weights of the voxels are close to piece-wise constant. In ad-
dition, ‘2-fusion penalty can be used if successive regression coeffi-
cients are known to vary slowly and can also be interpreted in
terms of correlations between successive features in some cases
(Hebiri and van de Geer, 2011). While these models based on both
‘1 norm and other certain smoothing penalty, might achieve improved
sensitivity over the plain ‘1 model, they do not make use of any explicit
prior grouping or other structural information of the features (Xia et al.,
2010).

Correspondingly, another class of methods to make more explicit
use of the segregation and integration of the brain, is based on struc-
tured sparsity models (Bach et al., 2012b; Schmidt et al., 2011; Chen
et al., 2012), which have been proposed to extend the well-known
plain ‘1 models by enforcing more structured constraints on the solu-
tion. For example, the discriminative voxels are grouped together into
few clusters (Baldassarre et al., 2012; Michel et al., 2011), where the
(possibly overlapping) groups have often been known as a prior infor-
mation (Xiang et al., 2012; Liu and Ye, 2010; Yuan et al., 2013; Jacob
et al., 2009; Liu et al., 2009a; Ng and Abugharbieh, 2011). However, in
many cases, the grouping information is not available beforehand, and
one can use either the anatomical regions as an approximation
(Batmanghelich et al., 2012), or the data driven methods to obtain the
grouping information such as hierarchical agglomerative clustering
(Ward hierarchical clustering, for example) and a top-down step to
prune the generated tree of hierarchical clusters in order to obtain the
grouping information (Michel et al., 2012; Jenatton et al., 2012).

While structural sparsity helps select the correlated discriminative
voxels and is necessary for the “completeness” of the selected discrimi-
native voxels, the result of feature selection may not be stable and is
likely to include many noisy and uninformative voxels. For years, the
idea of ensemble has been applied to reduce the variance of feature
selection result (Hastie et al., 2009; Mota et al., 2014). Among them,
one important class of methods for high dimensional data analysis is
stability selection (Meinshausen and Bühlmann, 2010; Shah and
Samworth, 2013). It is an effective way for voxel selection and structure
estimation, based on subsamplings (bootstrapping would behave
similarly).

It aims to alleviate the disadvantage of the plain ‘1 model, which
either selected by chance non-informative regions, or even worse,
neglected relevant regions that provide duplicate or redundant classifi-
cation information (Mitchell et al., 2004; Li et al., 2012). This is due in
part to the worrying instability and potential deceptiveness of the
most informative voxel sets when information is non-local or distribut-
ed (Anderson and Oates, 2010; Poldrack, 2006). Correspondingly, one
major advantage of stability selection is the control of false positives,
i.e. it is able to obtain the selection probability threshold based on the
theoretical boundary on the expected number of false positives. In addi-
tion, stability selection is not very sensitive to the choice of the sparsity
panalty parameter, and stability selection has been applied to the pat-
tern recognition based on brain fMRI data and achieved better results
than plain ‘1 models (Ye et al., 2012; Cao et al., 2014; Ryali et al.,
2012b; Mairal and Yu, 2013a; Meinshausen, 2013; Rondina et al.,
2014). For example, SCoRS (Rondina et al., 2014) is an application of sta-
bility selection designed for the particular characteristics of neuroimag-
ing data. Notice that we are focusing on the feature selection here. As for
theprediction or classification accuracy, this ensemble or averaging idea
has already been applied to reduce the prediction variance, and the
examples include the bagging methods and forests of randomized
trees (Breiman, 1996, 2001).
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