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In this work, we expose a mathematical treatment of brain–behaviour relationships, which we coin behavioural
Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli
into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief,
bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coor-
dinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating
neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-
constrained approximation to the brain's input–outcome transform. In other words, neuroimaging data essen-
tially serves to enforce the realism of bDCM's decomposition of input–output relationships. In addition, post-
hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of net-
work features for funnelling input–output relationships. This is important, because this enables one to bridge the
gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the ap-
proach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from
an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of
functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurolog-
ical patients).

© 2015 Elsevier Inc. All rights reserved.

Introduction

Humans are largely unaware of the mechanisms that determine the
way they process information and how they respond to it. These mech-
anisms can be described at the psychological level (e.g., in terms of
perceptions, emotions and/or intentions) and at the neurobiological
level (e.g. in terms of the specific involvement of brain regions and/or
neuromodulatory systems). Bridging these two levels of description is
the hallmark of cognitive neuroscience. But can we use neuroimaging
data to understand howbrain networks funnel the impact of (incoming)
relevant information onto the production of (overt) behaviour? This
work exposes a mathematical approach that allows us to decompose
the specific contribution of brain regions and their interactions to the
behavioural response, given whole-brain neuroimaging time series.

The gold-standard of modern neuropsychological investigations of
brain–behaviour relationships relies upon identifying the behavioural
deficits of patients exhibiting focal brain lesions or atrophies (Godefroy
et al., 1998). Although this approach provides invaluable evidence for
causal brain–behaviour relationships, it has two severe drawbacks:
(i) it limits the scope of neuroscientific investigations to those behav-
ioural processes that are specifically impaired in accessible brain-

damaged patients, and (ii) its interpretation can be partially confounded
by functional recovery induced by brain plasticity mechanisms (see
e.g., Duffau et al., 2003). The latter issue is a consequence of the brain's
functional degeneracy (Price and Friston, 2002; Friston and Price, 2003),
i.e. the ability of its (structurally different) elements to perform the
same function or yield the same output (Edelman and Gally, 2001).
Taken together, these concernsmake functional neuroimaging in healthy
subjects a necessary complement to brain-damaged patient studies.

Functional degeneracy parallels the notion of functional integration
within brain networks (Price and Friston, 2002), which suggests that
the functional role of cerebral components (brain regions, neural en-
sembles, neurons, …) is largely determined by the influence they
exert onto each other (Zeki and Shipp, 1988; Tononi et al., 1994). In
this context, the past decade has witnessed a paradigm switch in
human brain mapping research. In addition to localizing brain regions
that encode specific sensory, motor or cognitive processes, neuroimag-
ing data is nowadays further exploited to understand how information
is transmitted through brain networks (Sporns, 2007). The ambition
here is to ask questions such as: “what is the nature of the information
that region A passes on to region B?”. Such analysis of brain imaging
data relies on biophysical models of how the brain is wired and how it
reacts in different situations (Valdes-Sosa et al., 2011), a seminal exam-
ple of which is Dynamic Causal Modelling or DCM (Friston et al., 2003).
DCM has become a standard tool for identifying the connectivity struc-
ture and plasticity of functional brain networks fromneuroimaging data
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(Daunizeau et al., 2011a). It has proven useful in disclosing neurobiolog-
ical mechanisms underlying, for example, associative learning (Den
Ouden et al., 2010), speech comprehension (Leff et al., 2008), action ob-
servation (Hillebrandt et al., 2014) or motivational processes (Schmidt
et al., 2011). At present, DCM is the most suitable framework within
which to address the problem of comprehending how information en-
ters, propagates, and reverberates through brain networks (Smith
et al., 2011). This is because it is based upon a generative model that
describes how stimuli and/or task instructions induce changes in (hid-
den) coupled neuronal states that cause variability in the observed
(local) neuroimaging time series. DCM does not, however, explain
how distributed brain responses are causally involved in the production
of functional outcomes (e.g., perceptual content, memory retrieval, de-
cisions, etc.).

This is the issue we propose to address in this work. In doing so, our
objective is less about picturing the connectivity of brain networks than
about explaining how it eventually controls trial-by-trial functional
outcomes. More precisely, we aim at performing a neurocognitive de-
composition of the transfer function from experimental inputs (stimuli
and/or task instructions) to functional outcomes (behavioural re-
sponses), through activity in the underlying large-scale brain network
dynamics. Critically, this decomposition is performed under the con-
straint that its intermediary (neural) states are maximally similar to
brainmeasurements. This requires (i) augmentingDCMwith amapping
from hidden neuronal states to behavioural outputs, (ii) extending cur-
rent probabilistic system identification techniques to dealwith concom-
itant empirical recordings of neuroimaging and behavioural data time
series, and (iii) developing post-hoc artificial lesions' analyses that can
flag those network features that are critical for a given input–output
transfer function. As will become clearer later on, we will borrow inspi-
ration from classical “decoding” schemes (Haynes and Rees, 2006;
Serences and Saproo, 2012) to construct our mathematical mapping
from brain activity to functional outcomes. In this view, segregation
and integration within brain networks determine how incoming infor-
mation selectively flows through (large-scale) brain networks, whose
elements cooperate to produce functional outcomes. Here, neuroimag-
ing data serves to identify critical parameters (e.g., synaptic weights
and their modulation by experimental manipulations) that control the
input–state–output transfer function. In turn, this endows our decom-
position of input–output relationships with neurobiological realism.
The model also allows us to simulate the behavioural deficits that
would follow from anatomical lesions on either brain regions or their
connections. This is important, because this enables us to quantify
how important those large-scale network features are for funnelling
the input–output relationship. It also means that we are in a position
to quantitatively relate functional neuroimaging studies in healthy sub-
jects with behavioural studies in brain-damaged patients.

This paper is organized as follows.
We first expose the relevant mathematical details of our approach,

which we coin behavioural DCM or bDCM (cf. Fig. 1). In particular, we
describe the rationale behind the parametric form of its three constitu-
ent mappings, namely: (i) the mapping from experimental inputs to
hidden neural state dynamics, (ii) the mapping from neural states to
neuroimaging time series, and (iii) the mapping from neural states to
behavioural outcomes (which is inspired from decoding schemes). We
also summarize the probabilistic (Bayesian) inference machinery, as
well as our strategy for predicting the impact of network lesions. We
then assess the face validity of the approach using Monte-Carlo simula-
tions and demonstrate it in the context of empirical fMRI data from a
healthy subject performing a (Go/No-Go) inhibitory control task. Final-
ly, we discuss the limitations and promising extensions of our work.

Model and methods

In this section,we expose themathematical details of bDCM. Wefirst
recall the generative model of DCM for fMRI data, which consists of a

dynamical mapping from experimental inputs to evoked dynamics of
hidden neural states, which drive spatio-temporal variations in the
BOLD signal.We then showhow to augment thismodelwith amapping
fromhidden neural states to overt behavioural outcomes, borrowing in-
tuitions from decoding approaches. Finally, we summarize the ensuing
probabilistic (Bayesian)model inversion scheme, aswell as our strategy
for predicting behavioural deficits that result from (simulated) lesions
on themodel. Importantly, we also highlight how to derive quantitative
indices of the behavioural relevance of network connections, and how
these differ from standard DCM estimates of effective connectivity.

DCM for fMRI data: predicting distributed BOLD responses

DCM is based upon a generativemodel, i.e. a quantitative description
of the mechanisms bywhich observed data are generated. In particular,
large-scale brain networks are described in terms of segregated brain
regions that influence each other through reciprocal connections,
whose strength can be specifically modulated by the context (e.g. task
instructions). A key property of this realistic scenario is that any input
entering the network quickly reverberates through recurrent (feed-
back) connections, which compromises qualitative predictions of its im-
pact on the network (Daunizeau et al., 2011b). In turn, modelling how
experimental manipulations (u) drive the dynamics of distributed hid-
den neural states (x) has to rely upon dynamical system theory. Let us
assume that distributed neural dynamics obey the following ordinary
differential equation:

x
� ¼ f x;uð Þ ð1Þ

where ẋ≡dx/dt is the rate of change of the system's neural states and f
captures the biophysical mechanisms that determine the impact of u
onto the temporal evolution of x. The parametric form of the neural
states' evolution function that is used in DCM for fMRI derives from a
second-order Taylor expansion of the unknown function f, as follows
(Friston et al., 2003; Stephan et al., 2008):
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where the gradients of f are evaluated at the system's steady state in the
absence of inputs (x=0, u=0). The second line of Eq. (2) showsDCM's

Fig. 1. Schematic representation of bDCM. Experimental stimuli enter the systemas inputs,
which are propagated and reverberated through the network, whose activity x evolves ac-
cording to models borrowed from dynamical systems' theory. This evoked activity both
generates a hemodynamic response visible in the fMRI BOLD signal and eventually pro-
duces a behavioural response (e.g. an observable decision such as a button press).

203L. Rigoux, J. Daunizeau / NeuroImage 117 (2015) 202–221



Download English Version:

https://daneshyari.com/en/article/6025024

Download Persian Version:

https://daneshyari.com/article/6025024

Daneshyari.com

https://daneshyari.com/en/article/6025024
https://daneshyari.com/article/6025024
https://daneshyari.com

