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Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-
dimensional information for computational neuroscience applications standardized data fusion and efficient
reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used
for computational brain modeling to constrain models with individual measurable features of the brain, such
as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional
data to build full brainmodels of individual humans. For convenientmodel construction,we developed a process-
ing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally
electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to
generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional
connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen
level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly
uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and
intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail
the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also intro-
duce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity
(SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the
functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome
extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared
them to other tractography approaches. Together with the pipeline we present several principles to guide future
efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are
made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.
com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly usedwithHigh Perfor-
mance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a
convenient web-interface.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In biology, the notion that structure predicts function is widespread.
In human neurosciences, different modalities image different structural
aspectsmaking their integration imperative to predict function (Sporns,

2013). The Virtual Brain (TVB, thevirtualbrain.org) uses empirical struc-
tural and functional data to build full brain models of individual
primates—consisting of interacting dynamic local models—that predict
individual whole-brain activity on different scales (Ritter et al., 2013;
Sanz-Leon et al., 2013; Roy et al., 2014; Woodman et al., 2014). The
interactions between neuronal populations in a full brain model are
constrained by the anatomical fiber skeleton, i.e., the structural
connectome, obtained from diffusion-weighted magnetic resonance
imaging (dwMRI) using tractography techniques. The human brain
connectome is the set of neuronal connections in the human brain, a
concept that crosses spatial brain scales (Sporns et al., 2005; Craddock
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et al., 2013). The termconnectome is used in the literature for functional
connectivity (FC; i.e., statistical dependencies of brain activity), struc-
tural connectivity (SC; i.e., anatomical connections between brain
areas) and effective connectivity (EC; i.e., causal interaction between
brain areas). A connectome is often represented as a weighted graph
with nodes defining brain regions and edges characterizing the connec-
tions between these regions. FC is a highly variable and non-stationary
activity pattern (Bassett et al., 2011b; Allen et al., 2014; Hutchison
et al., 2013; Zalesky et al., 2014) arising from interactions within the
structural skeleton. FC is a statistical concept that estimates correlations
between data from simultaneousmeasurements of different brain areas
that does not necessarily reflect the neuroanatomical structures. On the
other hand, the anatomical connection pattern or wiring diagram
between neurons and neuronal ensembles, dubbed SC, is typically
described in terms of distances and connection strengths mediated by
synaptic or electric connections between region pairs. In contrast, EC
captures the causal relations between neural systems by quantifying
the directed influences that one element of a generative model exerts
over another (Valdes-Sosa et al., 2011).

In recent years, efforts for multicenter data sharing have increased
and several large-scale projects started to collaboratively pool and
compile multimodal neuroimaging data, e.g., (Biswal et al., 2010; Van
Essen et al., 2012). The Neuroscience Information Framework (http://
neuinfo.org/) lists over 2500 different databases with relevance for
neuroscience. This high number of heterogeneous resources requires
standardized and efficient processing routines in order to (i) extract
interpretable and relevant information and to (ii) organize and
integrate it in a systematic and unifying structure: “Perhaps the single
biggest roadblock to higher order datamining is the lack of standardized
frameworks for organizing neuroscience data” (Akil et al., 2011).

We propose to go one step further: In order to get from pure data
gathering to knowledge inference we need to connect functional and
structural data by means of model-based integration (Jirsa et al.,
2002, 2010; Ritter et al., 2013). The formulation of a comprehensive
theory of neural computation that allows a qualitative and quantita-
tive mapping between cognitive and neural states is only possible if
we close the loop between data-driven inference and model-based
prediction. Jirsa et al. (2002) merged geometric and topographic
structural information with brain network modeling, but used
simplified network connectivity and demonstrated that temporal
activation patterns are well captured as observed in human brain
imaging. A necessary condition to produce realistic spatiotemporal
activations is the additional inclusion of topological information,
that is, realistic network connectivity, which poses substantial
neuroinformatics challenges. The Virtual Brain is a step into this
direction and provides an integrated neuroinformatics platform
(Sanz-Leon et al., 2013) for modeling dynamic large-scale brain
network models (BNM) constructed from structural data and
interacting local dynamic population models. Within its theoretical
framework, TVB integrates the relevant information extracted from
a variety of empirical sources associating brain network structure
with brain function via models of neural activity. By doing so, it
abstracts from the high dimensionality of information contained in
raw imaging data and unifies relevant structural and dynamical
information within a single brain model. The unified theoretical
framework provided by TVB together with the processing pipeline
for multimodal empirical data opens up new avenues of collective
neuroscience. TVB empowers the community to conveniently
construct biologically informed brain models, to perform in silico
experiments that predict neuronal activity and to expose principles
of computation across spatial and temporal scales in a variety of
modalities.

Data reduction and fusion are prerequisites for automated data
analysis, to ensure interoperability of data structures and for compara-
bility of multicenter acquisitions. One example is the alignment of the
spatial and temporal dimensions of recordings fromdifferentmodalities

within and across subjects and their integration into a common refer-
ence system. Data turns into information when they are semantically
annotated and ontologically aligned. Extracted information gains maxi-
mal interpretability when mappings between data sets and their
organization into a unified coordinate system can be achieved, e.g., the
registration and mapping of anatomical structures between modalities
or temporal alignment of simultaneously acquired multimodal data
(Calhoun and Lemieux, 2014; Jorge et al., 2014; James and Dasarathy,
2014; Uludağ and Roebroeck, 2014).

The processing pipeline presented in this article provides an efficient
and automated way for generating full and self-consistent data sets
for TVB model construction integrating anatomical, diffusion weighted
and functional MRI scans with EEG recordings. Online supplementary
Movie M1 illustrates the involved imaging modalities and estimated
source activity along with brain network activity projected onto recon-
structed head and cortex models of the exemplary subject QL used
throughout this paper. The pipeline runs on standard computers, but
also supports a high degree of parallelization for computationally inten-
sive processes, optimized to run on stand-alone workstations and high
performance clusters alike. In the following, we describe the functional-
ity of the pipeline by demonstrating each step on the exemplary data
set. Up to now we pre-processed 50 full data sets using this pipeline.
All data setswere stored in the TVB XNAT (Marcus et al., 2007) database
in Toronto where they are made available to the TVB consortium. Along
with the processing steps, we illustrate the challenges posed when
workingwithmultimodal imaging data and integrating them in a single
framework such as provided by TVB. These challenges range from stor-
age requirements due to large amounts of data, interoperability and
interfacing between different toolboxes and coordinate systems,
fallacies of dwMRI tractography to outcome validation. Each of the
imaging modalities serves different purposes during model generation
and optimization within TVB:

(i) High resolution T1-weighted MRI scans are used to obtain
parcellations of cortical and subcortical white and gray matter
(WM, GM) into subregions of interest based on anatomical
landmarks and to construct anatomically constrained dipole
source models for forward modeling and inverse source recon-
struction of EEG andmagnetoencephalography (MEG). Resulting
lead-fieldmatrices and inversion kernels are used tomap cortical
activity to scalp locations of (M)EEG sensors and vice versa. Fur-
thermore, high-resolution scalp/head, skull and cortex-surface
triangulations are used for highly resolved surface simulations
and output visualization.

(ii) fMRI volumes are parcellated according to the high-resolution
atlases derived from T1-weighted data yielding region-wise
aggregated BOLD time-series and FC matrices generated from
these are used tofit model output bymeans of parameter tuning.

(iii) Diffusion-weighted MRI (dwMRI) data are parcellated according
to the high-resolution atlases derived from T1-weighted data
yielding estimated white matter fiber tracts and SC matrices.
The parcellations are used for defining seed- and stop-locations
during tractography.

(iv) EEG data is projected to source space and used to optimize
parameters of the brain model.

Pipeline results are provided in a format that can be directly
imported to TVB and readily integrated into a single full-brain model.
As part of this pipeline a novel tractography-based connectome extrac-
tion approach is described. Themethod introduces several concepts that
facilitate the standardization of the BNM construction process.
Connectomes are embedded at the core of the generic BNM equation
to define long-range information transmission thereby linking large-
scale network infrastructurewith neuralmass dynamics. In this context,
connectomes are based on a given parcellation of the brain and consist
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