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Multivariate pattern analysis (MVPA) methods such as support vector machines (SVMs) have been increasingly
applied to fMRI and sMRI analyses, enabling the detection of distinctive imaging patterns. However, identifying
brain regions that significantly contribute to the classification/group separation requires computationally expen-
sive permutation testing. In this paper we show that the results of SVM-permutation testing can be analytically
approximated. This approximation leads tomore than a thousandfold speedup of the permutation testing proce-
dure, thereby rendering it feasible to perform such tests on standard computers. The speedup achieved makes
SVM based group difference analysis competitive with standard univariate group difference analysis methods.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Statistical parametric mapping (Frackowiak et al., 1997), voxel-
based morphometry (Ashburner and Friston, 2000; Davatzikos et al.,
2001) and related methods that apply voxel-wise statistical tests have
been fundamental tools in modern neuroimaging. These methods
have made it possible to quantify group differences and understand
spatial patterns of functional activation/brain structure. Methods
belonging to this family of mass-univariate methods are amenable to
standard statistical inference techniques. Typically thesemethods asso-
ciate a statistical significance measure such as a ‘p-value’ with every
voxel. This allows for easy interpretation of the output from these
methods. However, during the past decade, the neuroimaging commu-
nity has recognized that multi-variate relationships among different
brain regions cannot be captured by univariate analysis alone. This has
lead to the development of multi-variate image analysis methods,
which provide a more complete picture of imaging patterns that relate
to brain activity, structure and pathology (Craddock et al., 2009;
Cuingnet et al., 2011; Davatzikos et al., 2005; De Martino et al., 2008;
Fan et al., 2007; Klöppel et al., 2008; Koutsouleris et al., 2009; Langs
et al., 2011; Mingoia et al., 2012; Mouro-Miranda et al., 2005; Pereira
et al., 1998; Richiardi et al., 2011; Sabuncu and Van Leemput, 2011;
Vemuri et al., 2008; Venkataraman et al., 2012; Wang et al., 2007; Xu
et al., 2009). Among the most successful of such methods are SVM-
based tools (Fan et al., 2007; Klöppel et al., 2008), which have been
quite widely used in functional (Craddock et al., 2009; Davatzikos
et al., 2005; De Martino et al., 2008; Mouro-Miranda et al., 2005;
Wang et al., 2007) and structural (Cuingnet et al., 2011; Fan et al.,

2007; Klöppel et al., 2008; Koutsouleris et al., 2009; Vemuri et al.,
2008) neuroimaging analysis.

However, interpretation of SVM models is difficult because unlike
univariate methods (Ashburner and Friston, 2000), SVMs do not
naturally provide statistical tests (and corresponding p-values) asso-
ciated with every voxel/region of an image. Rather, it is considered
normal to evaluate these models as “black boxes” on the basis of
cross-validation accuracy, which is a measure of how accurately
they detect the presence of disease based on data from an image.
While cross-validation provides an overall estimate of the separabili-
ty between two groups or conditions, it is unclear how each brain
region contributes to the construction of the multivariate discrimina-
tory pattern that ultimately drives the detection of disease. Further,
while SVM models associate a ‘weight coefficient’ with every voxel/
region of the image space they do not offer an analytic framework
for estimating statistical significance of these weights, an issue of fun-
damental importance. Hence permutation tests have typically been
used to understand what regions of the brain drive the SVM decision
(Mouro-Miranda et al., 2005; Wang et al., 2007). These permutation
tests are extremely expensive computationally. Hence they are large-
ly prohibitive in many practical applications. In this paper, we show
that, given the high dimensional nature of neuroimaging data, it is
possible to analytically approximate the null distributions that we
ordinarily generate using permutation tests. We verify this approxi-
mation by comparing it with actual permutation testing results
obtained from several neuroimaging datasets. Some of this work is
based on concepts first presented by us in Gaonkar and Davatzikos
(2012). However, the derivations presented here are more generic.
Further, we have added experiments that establish a) the multi-
variate nature of the inference made using such tests, b) advantages
compared to typical univariate testing machinery, and c) advantages
compared to inference based on sparse methods.
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Materials and methods

Background

Support vector machines
The support vector machine attempts to learn a model from data

by finding the largest margin hyperplane that separates data from dif-
ferent conditions (e.g. baseline/activation) or groups (e.g. patients/
controls). Training is the process of finding this hyperplane using
data with known labels (condition, group, etc.). Now, for data with
unknown labels (test data), the SVM uses the hyperplane found (dur-
ing training) to estimate whether it belongs to a patient or to a con-
trol. The SVM treats individual data as points located in a high
dimensional space. Fig. 1 illustrates the concept of the algorithm in
an imaginary 2D space: dots and crosses represent imaging scans
taken from two groups or conditions. Even though the two groups
cannot be separated on the basis of values along any one dimension
the combination of two dimensions gives perfect separation. This
corresponds to the situation where a single anatomical region may
not provide the necessary discriminative power between groups,
whereas the multivariate SVM can still find the relevant hyperplane.
Typical imaging data lives in an extremely high dimensional space
determined by the number of voxels in each image.

To apply SVMs in neuroimaging data, we convert an image with D
voxels into a vector whose dth component is equal to the intensity
value at the dth voxel in the image. Thus, we re-organize the ith
image into a D-dimensional point that lives in RD. Let us denote
the ith point by xi where i ∈ 1,…, m indexes all subjects in the
study. In most imaging studies, we also have a label associated with
each image which tells us whether the image belongs to a patient
or a control subject. We denote these labels by y(i) ∈ {+1, −1}.
Then the support vector machine finds ‘hyperplane coefficients’
denoted by w⁎ and b⁎ such that:
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The weight vector w⁎ represents the direction in which the SVM
deems the two classes (controls and patients) to differ the most. To
determine the label associated with a new test subject xtest we use
ytest = sign (w⁎Txtest + b⁎). Since the data x(i) are in RD; the weight

vector w⁎ is also in RD. Thus, w⁎ can be represented as an image
which we call a ‘discriminative map’. However, until now there has
been a limited use of SVM based discriminative maps in neuroscience.
This is because these maps do not provide a measure of statistical
significance associated with a voxel/region of an image. What is the
probability that a particular image voxel would have a weight vector
component at least as large as the one observed in an experiment due
to pure chance alone? To answer such a question, one needs to estab-
lish a null distribution on the weight vector components at each
image voxel. An empirical approach for obtaining such a null distribu-
tion is through the use of permutation tests. We describe permutation
testing in the next section.

Permutation tests
Permutation testing can be used to establish a null distribution

on the weight vector components at each image voxel. The permuta-
tion testing procedure is illustrated in Fig. 2. This procedure for per-
mutation testing was applied in the context of neuroimaging by
Mouro-Miranda et al. (2005) and Wang et al. (2007). In Fig. 2, the
dots denote controls and the crosses denote patients. The first step
involves the generation of a large number of shuffled instances of
data labels by random permutations. Each shuffled instance is used
to train one SVM. For each instance of shuffled labels, this generates
one hyperplane parameterized by the corresponding vector w. Then
for any component ofw, we have one value corresponding to a specif-
ic shuffling of the labels. Collecting the values corresponding to any
one component of w allows us to construct a null distribution for
that component of w. Recall that each component of ‘w’ corresponds
to a voxel location in the original image space. Thus, we now have a
null distribution associated with every voxel in the image space. Com-
paring each component of w⁎ with the corresponding null distribu-
tion allows us to estimate statistical significance.

While we run tests on each coefficient separately, it is crucial to
note that permutation testing based inference is distinct from univar-
iate inference. These tests are capable of identifying multivariate
phenomenon that univariate tests cannot find. We further clarify
this point using experiments on simulated data presented in the
‘Experiments and results’ section.

Further, it is also vital to note that the permutation test based
inference method described here is distinct from thresholding SVM
weights themselves which has been popular in literature. However,
the thresholding approach is problematic and has also been repeated-
ly criticized in machine learning literature because a larger weight
value does not necessarily indicate higher feature relevance. Limita-
tions of the weight vector component thresholding do not simply
carry over to the permutation testing methodology described here.
We have included a simulated experiment to establish this fact. In
the Experiments and results: comparison with prior art section, we
show using simulated data that the proposed approach continues to
work when SVM weight thresholding fails.

It is obvious that running 1000 permutation tests requires training
1000 support vector machine classifiers. This requires a significant
amount of time (a few hours in our case) (In many applications,
one might need 10,000 permutations or more). In contrast traditional
SPM based methods (Frackowiak et al., 1997) can run in a few mi-
nutes. Further, some SVM applications involve running separate
SVMs on local 3D windows in MR images in order to identify group
differences (Rao et al., 2011; Xiao et al., 2008). In such cases, it is com-
putationally infeasible to run the required number of permutation
tests experimentally.

Analytical approximation to permutation tests: the case of balanced data

The primary aim of this work is to show that the permutation test-
ing procedure described above can be replaced by an analytic alterna-
tive that can be computed in a small fraction of the time (a fewFig. 1. Illustration of the SVM concept in two dimensions.
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