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21In recent years, coordinated variations in brain morphology (e.g. volume, thickness, surface area) have been
22employed as a measure of structural association between brain regions to infer large-scale structural correlation
23networks (SCNs).
24However, it remains unclear how morphometric correlations relate to functional connectivity between brain
25regions. Resting-state networks (RSNs), derived from coordinated variations in neural activity at rest, have
26been shown to reflect connectivity between functionally related regions as well as, to some extent, anatomical
27connectivity between brain regions. Therefore, it is intriguing to investigate similarities between SCN and RSN
28to help identify how morphometric correlations relate to connections defined by resting-state connectivity.
29We investigated the similarities in connectivity patterns and small-world organization between SCN, derived
30from correlations of regional gray matter volume across individuals, and RSN in 36 healthy individuals. The
31results showed a significant similarity between SCN and RSN (60% for positive connections and 40% for negative
32connections) thatmight be explained by shared experience-related functional connectivity underlying both SCN
33and RSN. Conversely, the small-world parameters of the networks were significantly different, suggesting that
34SCN topological parameters cannot be regarded as a substitute for topological organization in resting-state
35networks. While our data suggest that using structural correlation networks can be useful in understanding
36alterations in structural associations in various brain disorders, it should be noted that a portion of the observed
37alterations might be explained by factors other than those reflecting resting-state connectivity.
38© 2013 Published by Elsevier Inc.
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43 Introduction

44Q2 Coordinated variations in brain morphology (e.g. volume, thickness,
45 surface area) have been recently employed as a measure of structural
46 association between brain regions to infer large-scale structural correla-
47 tion networks (SCNs) (Bassett et al., 2008; Bernhardt et al., 2011; Chen
48 et al., 2008, 2011; Fan et al., 2011; Guye et al., 2010;He and Evans, 2010;
49 He et al., 2007, 2008, 2009a; Hosseini et al., 2012a, 2012b; Lerch et al.,
50 2006; Lv et al., 2010; Raj et al., 2010; Sanabria-Diaz et al., 2010; Sun et
51 al., 2012; Wu et al., 2012; Zhou et al., 2011). Alterations in the arrange-
52 ments of these networks have been associatedwith normal aging (Chen
53 et al., 2011; Sun et al., 2012; Wu et al., 2012), multiple sclerosis (He
54 et al., 2009a), Alzheimer's disease (He et al., 2008; Zhou et al., 2011),
55 schizophrenia (Bassett et al., 2008) and epilepsy (Bernhardt et al.,
56 2011; Raj et al., 2010). However, it remains unclear howmorphometric
57 correlations relate to actual anatomical and/or functional connectivity
58 between brain regions.

59These morphometric correlations might reflect anatomical connec-
60tivity, as axonally connected regions are believed to be influenced by
61common developmental, trophic and maturational effects (Bernhardt
62et al., 2011; Cheverud, 1984; Wright et al., 1999; Q3Zhang et al., 2000).
63This idea is supported by a number of studies that suggest consistencies
64between networks constructed frommorphometric correlations of cor-
65tical volume, thickness, and surface area data with those constructed
66from white matter tract-based data (Bernhardt et al., 2008; He et al.,
672007; Lerch et al., 2006; Sanabria-Diaz et al., 2010). Further evidence
68is provided by a recent study that reported 40% similarity between cor-
69tical thickness correlations and diffusion tensor imaging (DTI)-derived
70anatomical networks (Gong et al., 2012).
71Alternatively, morphometric correlations might also be influenced
72by functional connectivity as functional specialization, through practice,
73skill acquisition and training, can cause changes in underlying anatomy
74(experience-related plasticity) (Duan et al., 2012; Gaser and Schlaug,
752003a; Halwani et al., 2011; Maguire et al., 2000, 2006; Rykhlevskaia
76et al., 2008; Sluming et al., 2002). This possibility is supported by neuro-
77imaging evidence showing, for example, increased gray matter volume
78in motor, auditory and visual–spatial brain regions in professional mu-
79sicians in response to long-term skill acquisition (Gaser and Schlaug,
802003a, 2003b), enhanced integration of striatal network in chess
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81 experts (Duan et al., 2012), increased gray matter density in Broca's
82 area in orchestramusicians (Sluming et al., 2002), and increased hippo-
83 campal gray matter volume in taxi drivers (Maguire et al., 2000, 2006;
84 Woollett and Maguire, 2011).
85 Resting-state networks (RSNs) (Q4 Biswal, 2012; Biswal et al., 1995),
86 derived from coordinated variations in neural activity at rest, have
87 been shown to reflect connectivity between functionally related
88 regions (Biswal et al., 2010; Greicius et al., 2009). Recent data
89 show that resting-state functional connectivity not only reflects
90 functional connectivity mediated by indirect anatomical connections
91 and experience-related functional plasticity, but also represents, to
92 some extent, the underlying anatomical connectivity between brain
93 regions (Damoiseaux and Greicius, 2009; Honey et al., 2009; Luo et al.,
94 2012; Skudlarski et al., 2008; van den Heuvel et al., 2009a). The
95 gold standard for extracting anatomical connectivity involves invasive
96 retrograde/anterograde tract tracing that cannot be done in the living
97 human (Bernhardt et al., 2011). However, a significant agreement has
98 been demonstrated between amajority of common resting-state connec-
99 tions and known anatomical fiber tracts inmonkeys (Mantini et al., 2011;
100 Shen et al., 2012). Thus, it is intriguing to investigate similarities between
101 SCN and RSN to help identify how morphometric correlations relate
102 to functional connections defined by resting-state connectivity.
103 In the present report, we aimed to identify the similarities between
104 SCN, derived from correlations of regional gray matter volume across
105 individuals and RSN in healthy adults. SCN was represented by a set of
106 nodes that correspond to brain regions and a set of edges (connections)
107 that correspond to statistical correlations in gray matter volume be-
108 tween brain regions, across individuals (He et al., 2007; Hosseini et al.,
109 2012b). RSNs were represented by the same set of nodes while their
110 edges were quantified by computing the statistical correlation between
111 time series of different brain regions (Bassett et al., 2012; Buckner et al.,

2009; He et al., 2009b;Q5 Liao et al., 2010;Q6 Tian et al., 2011; van denHeuvel
113 et al., 2009a; Wang et al., 2009a, 2009b). Thresholding the obtained
114 correlation matrices at an absolute threshold results in networks with
115 different numbers of nodes and connections that might influence the
116 network measures and limit interpretation of comparison findings
117 (van Wijk et al., 2010). Therefore, many recent studies involving brain
118 networks binarize the correlation matrices at fixed network densities
119 (number of existing edges to the number of possible edges in the net-
120 work) and compare the binary networks across a range of densities
121 (Q7 Alexander-Bloch et al., 2013a, 2013b; Bassett et al., 2012; Bernhardt
122 et al., 2011; Bruno et al., 2012; Fan et al., 2011; He et al., 2009a;
123 Hosseini et al., 2012a, 2012b; Sanabria-Diaz et al., 2010; Wang et al.,
124 2010; Wu et al., 2012).
125 Similarities between two networks can be assessed either by com-
126 paring the similarity of their connections or by comparing their organi-
127 zational properties. The most direct way of comparing connections in
128 networks with the same size is to find their distances. The distances be-
129 tween two binary networks are usually calculated using the Hamming
130 distance (Shd), which measures the number of addition/deletion opera-
131 tions required to make two networks the same (van Wijk et al., 2010).
132 While Hamming distance gives an accurate estimate of similarity be-
133 tween network connections, it overestimates the similarity if the
134 networks are sparse (Fig. 1). Therefore, we also used a normalized
135 distance metric (Snorm) that accounts for large baseline correlations
136 between networks (Costa et al., 2007).
137 We also compared the organizational properties of SCN and RSN to
138 assess their similarities in terms of information processing potential.
139 Previous studies have shown that SCNs and RSNs follow small-world ar-
140 chitecture in healthy individuals (Bassett et al., 2008, 2012; Fan et al.,
141 2011; He et al., 2009a; Hosseini et al., 2012a, 2012b, 2013; Wu et al.,
142 2012), an architecture that provides optimal balance between local
143 and global information processing in the network (Amaral et al.,
144 2000; Bassett and Bullmore, 2006; Latora and Marchiori, 2001; Watts
145 and Strogatz, 1998). Therefore, we compared the organizational prop-
146 erties of SCN and RSN by directly measuring their small-world

147characteristics at the global level aswell as their connectedness proper-
148ties at the regional level.
149A recent study by Alexander-Bloch and colleagues examined the
150convergence of SCN constructed from cortical thickness data and
151RSN in healthy individuals and reported a significant correlation be-
152tween the two networks (Alexander-Bloch et al., 2013a, 2013b).
153However, they constructed SCN for cortical thickness data and did
154not include the subcortical regions. In the present study, we used re-
155gional volume data to construct SCN since they contain information
156regarding both thickness and surface area and thus reflect a summary
157effect of interaction between brain regions. Using regional volume
158data also allowed us to compare SCN and RSN that include both cor-
159tical and subcortical regions. In addition, the current study expands
160the previous findings by comparing the similarities and small-world
161indices between SCN and RSN across a large range of density thresh-
162olds. Finally, we tested the reproducibility of our findings by compar-
163ing RSN and SCN of the same subjects across two time points.
164Weexpected a degree of similarity between SCN andRSN thatmight
165be explained by the shared influence of both anatomical connectivity
166and experience-related plasticity. We also expected a higher small-
167world index in RSN compared to SCN since functional networks require
168rapid transitions and reconfigurations and would allow higher rates of
169information processing.

170Materials and methods

171Participants

172We enrolled 36 healthy adults (age 20–39 years old, mean age
17328.4) in the study (Table 1). Participants were excluded for any histo-
174ry of medical, neurologic or psychiatric conditions or MRI contraindi-
175cations. The Stanford University Institutional Review Board approved
176the study. This study was conducted according to the principles
177expressed in the Declaration of Helsinki. All participants provided
178written informed consent.

179MRI data acquisition

180MRI scanning was performed on a GE Discovery MR750 3.0 T
181whole body scanner (GE Medical Systems, Milwaukee, WI). High-
182resolution T1-weighted images were acquired with 3D spoiled gradient
183recall pulse sequence using the following parameters: TR = 8.5 ms,
184TE = 3.396, TI = 400 ms, flip angle = 15°, FOV = 220 mm, number
185of excitation = 1, acquisition matrix = 256 × 192, slice thickness =
1861.6. Totally, 124 contiguous coronal slices were obtained with in-plane
187resolution of 0.859 mm × 0.859 mm. Resting-state functional MRI data
188was acquired, in the same session, while participants rested in the
189scanner with their eyes closed using a T2* weighted gradient echo
190spiral pulse sequence: relaxation time = 2000 ms, echo time = 30 ms,
191flip angle = 80° and 1 interleave, field of view = 220 mm, slice thick-
192ness = 4 mm, spacing = 1 mm, matrix = 64 × 64, in-plane resolu-
193tion = 3.125. Number of data frames collected was 216 with a total
194scan time of 7:12 min. An automated high-order shimming method
195based on spiral acquisitionswas employed to reducefield heterogeneity
196(Glover and Lai, 1998).

197Image preprocessing

198Anatomical image preprocessing was performed using Statistical
199Parametric Mapping 8 (SPM8; Wellcome Department of Cognitive Neu-
200rology, London, UK) (Friston, 2007) as described in detail in our previous
201publications (Hosseini et al., 2012a, 2012b). The anatomical images were
202segmented into gray matter (GM), white matter, and cerebrospinal fluid
203images based on the ICBM Tissue Probabilistic Maps (http://www.loni.
204ucla.edu/ICBM/ICBMTissueProb.html). A study-specific a priori probabili-
205ty map of GM was created from the modulated spatially normalized
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