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a b s t r a c t

A geometric approach to the friction phenomena is presented. It is based on the holographic view which
has recently been popular in the theoretical physics community. We see the system in one-dimension-
higher space. The heat-producing phenomena are most widely treated by using the non-equilibrium
statistical physics. We take 2 models of the earthquake. The dissipative systems are here formulated from
the geometric standpoint. The statistical fluctuation is taken into account by using the (generalized)
Feynman's path-integral.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The system we consider consists of the huge number of parti-
cles (blocks) and the size of the constituent particles is the
mesoscopic-scale. It is lager than 50 nm¼5� 10�8 m and is far
bigger than the atomic scale (� 10�10 m). It is smaller than or
nearly equal to the optical microscope scale ð � 10�6 mÞ in the
branches such as the soft-matter physics, the nano-science physics
and the biophysics. The larger end of the mesoscopic (length) scale
depends on each phenomenon. For the earthquake it is about
10�4 m.

The physical quantities, such as velocity, energy and entropy,
are the statistically-averaged ones. It is not obtained by the deter-
ministic way like the classical (Newton) mechanics. Renormaliza-
tion phenomenon occurs not from the quantum effect but from the
statistical fluctuation due to the uncertainty caused by the fol-
lowing facts. Firstly each particle obeys the Newton's law with
different initial conditions. The total number of particles, N, is so
large that we do not or can not observe the initial data. Usually we
do not have interest in the trajectory of every particle and do not
observe it. We have interest only in the macroscopic quantities:
total energy and total entropy are the most important ones. Sec-
ondly, in the real system, the size and shape differ particle by
particle. We regard the randomness as a part of fluctuation. Finally
the models, presented in the following, contains discrete para-
meters (tn in Section 2 and yn in Section 3). As far as the dis-
creteness is kept (in the case that we no not take the continuous

limit), the quantities determined by the minimal principle include
the inevitable ambiguity which is regarded as a part of fluctuation.

After the development of the string and D-brane theories [1,2],
one general relation, between the 4-dimensional(4D) conformal
theories and the 5D gravitational theories, was proposed. The 5D
gravitational theories are asymptotically AdS5 [3–5]. The proposal
claims the quantum behavior of the 4D theories is obtainable by
the classical analysis of the 5D gravitational ones. The develop-
ment along the extra axis can be regarded as the renormalization
flow. This approach (called AdS/CFT) has been providing non-
perturbative studies in several branches: quark-gluon plasma
physics, heavy-ion collisions, non-equilibrium statistical mechan-
ics, superconductivity, superfluidity[6,7]. Especially, as the most
relevant to the present work, the connection with the hydro-
dynamics is important [8]. When a black hole is given a pertur-
bation, the effect decays as the relaxation phenomenon. The
transport coefficients, such as viscosities, speed of sound, thermal
conductivity, are important physical quantities.

We take, in Section 3, Burridge–Knopoff model for the earth-
quake analysis [9,10]. It was first introduced by Burridge and
Knopoff [11]. Carlson, Langer and collaborators performed a pio-
neering study of the statistical properties [12,13]. Further devel-
opment was reviewed in Ref. [14].

We exploit the computational step number n instead of (usual)
time. The step flow is given by the discrete Morse flows theory
[15,16]. In the first model (Section 2), we adopt this step-wise
approach for the time-development. The time variable is intro-
duced as tn ¼ nhðh : time� interval unitÞ. In the second model
(Section 3), we take the approach for the space-propagation. The
position variable is introduced as yn ¼ naða : space� interval unitÞ.
The non-equilibrium dissipative system is recently formulated
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using the discrete Morse flows theory combined with the (gen-
eralized) path-integral [17,18].

2. Spring-block model

We treat the movement of a block which is pulled by the spring
which moves at the constant speed V . The block moves on the
surface with friction. This is called the spring-block (SB) model.
We adopt the discrete Morse flows method to treat this non-
equilibrium system [15,16]. We take the following n-th energy
function to define the step(n) flow.

KnðxÞ ¼ VðxÞ�hnkVxþ η
2h

ðx�xn�1Þ2þ
m

2h2
ðx�2xn�1þxn�2Þ2þK0

n;

VðxÞ ¼ kx2

2
þkℓx; ð1Þ

where η is the friction coefficient and m is the block mass. h is the
‘time’ interval parameter. x is the position of the block. The
potential V(x) has two terms: one is the harmonic oscillator with
the spring constant k, and the other is the linear term of x with a
new parameter ℓ (the natural length of the spring). V is the
velocity (constant) with which the front-end of the spring moves.
Kn

0 is a constant which does not depend on x. The n-th step xn is
determined by the energy minimum principle: δKnðxÞj x ¼ xn ¼ 0
with the pre-known position at the (n-1)-th, xn�1, and that at the
(n-2)-th, xn�2.
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where n¼ 2;3;4;…. For the continuous time limit:
h-0;nh¼ tn-t; vn � ðxn�xn�1Þ=h- _x; ðxn�2xn�1þxn�2Þ=h2

- €x,
the above recursion relation reduces to the following differential

equation.

m €x ¼ kðV t�x�ℓÞ�η _x: ð3Þ
This is the ordinary one for the spring-block model. See Fig. 1.

The graph of movement (xn, Eq. (2)) is shown in Fig. 2. From the
graph, we see this system starts with the stick-slip motion and
reaches the steady state as n-1. Fig. 3 shows the energy change
as the step flows. It shows the energy oscillates periodically and
the amplitude goes down as the step goes. The physical dimen-
sions of the parameters in Eq. (3) are listed as

½m� ¼M; ½k� ¼MT�2; ½ℓ� ¼ L; ½η� ¼MT�1; ½V � ¼ LT�1; ð4Þ
where we assume that ½x� ¼ L, ½t� ¼ T and ½h� ¼ T. (M: mass, T:
time, L: length.)

Now we consider N copies of the one body system (2). N is
sufficiently large, for example, 1023(1 mol). We are modeling the
present statistical system as follows. The N particles are “moder-
ately” interacting each other in such way that each particle almost
independently moves except that energy is exchanged. The inter-
action is not so strong as to break the dynamics (2). We use
Feynman's path-integral method in order to take the statistical
average of this N-copies system. The statistical ensemble measure
will be given explicitly.

From the energy expression (1), we can read the metric (geo-
metry) of this mechanical system.

Δs2n � 2h2ðKnðxnÞ�K0
nÞ ¼ 2 dt2V1ðXn; tnÞþðΔXnÞ2þðΔPnÞ2;

V1ðXn; tnÞ � V
Xnffiffiffiffiffiffi
ηh

p
 !

�nk

ffiffiffi
h
η

s
VXn; dt � h; tn ¼ nh; ð5Þ

where Xn �
ffiffiffiffiffiffi
ηh

p
xn; Pn=

ffiffiffiffiffi
m

p � hvn ¼ ðxn�xn�1Þ. Using this metric,
we can introduce the associated statistical ensemble of the spring-
block model [19–21].

[Statistical Ensemble 1a]

Fig. 1. The spring-block model (3).

Fig. 2. Spring-block model, movement, h¼0.0001,
ffiffiffiffiffiffiffiffiffi
k=m

p
¼10.0, η=m¼ 1:0;V ¼ 1:0;

ℓ ¼ 1:0, total step no¼20,000. The step-wise solution (2) correctly reproduces the
analytic solution: xðtÞ ¼ e� η0 t=2 V fðη02=2ω2 �1Þð sin ΩtÞ=Ω þðη0=ω2Þ cos Ωtg�ℓþV
ðt�η0=ω2Þ;Ω¼ ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2�η02

p
¼ 9:99; 0rtr2; xð0Þ ¼ �ℓ ; _xð0Þ ¼ 0.

Fig. 3. Spring-block model, energy change, h¼ 0:0001;
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 10:0, η=m¼ 1:0;

V ¼ 1:0;ℓ ¼ 1:0, total step no¼20,000.

Fig. 4. The path fðyðtÞ;wðtÞ; tÞj0r trg of line in 3D bulk space (X,P,t).
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