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a b s t r a c t

A cambered elastomeric seal used in a novel universal joint for reciprocating circular motion is
investigated. Then based on the linear elastic Hooke equations and the Reynolds equation, mathematical
models of the contact pressure, film thickness and leakage with the method of variable substitution are
established. The numerical analysis and simulation are performed based on the modified inverse
hydrodynamic (IH) method and MATLAB numerical method. Besides, effects of various parameters on
the sealing performance are investigated systematically. The simulation results verify the effectiveness
and feasibility of proposed mathematical model and numerical algorithm. The results also lay the
theoretical basis for the structure design and performance analysis of the seal assembly.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Elastomeric seals play an important role in the field of modern
industry, which are the key to guarantee the reliable performance
of mechanical systems. They are widely applied in various envir-
onments of hydraulic systems, especially for static and dynamic
seals with rubber sealing materials. However, leakage is a serious
potential problem in hydraulic systems. As one of the most
important indexes to evaluate the sealing performance, leakage
depends on many factors, such as the seal material, operating
temperature, driving pressure, seal compression and seal geome-
try. Therefore, effects of these factors on the behavior of the seal
should be thoroughly understood and the leakage rate is reason-
ably determined, which is the primary mission of the seal design.

Leakage is closely related to the contact pressure and the film
thickness at the sealing contact. Researches concerned with
modeling of the contact pressure and film thickness for common
sealing forms could be found in many literatures, such as O-rings
[1–3], rectangular seals [4–7] and U-cups [8,9], et al. For modeling
of the contact pressure at a sealing contact, it was generally
computed by either the elementary stress–strain relations or
assuming the plane-strains conditions [10–14]. Nikas established
the sealing contact pressure of rectangular seals respectively based
on the linear elastic theory [11] and the Mooney–Rivlin theory
[12]. The finite element method was also applied for the sealing

form with special cross-section or the purpose of high computa-
tional accuracy [15–19]. While for calculating of the film thickness,
it was mainly on the basis of the elastohydrodynamic theory [20],
which was represented by one and two dimensional forms of the
Reynolds equation in actual application. As common seals are
usually axisymmetric, it means that the leakage mainly occurs
along the symmetry axis. Therefore, one-dimensional Reynolds
equation is widely applied. When the fluid transportation trans-
versely to the direction of motion is taken into consideration, the
form of two-dimensional Reynolds equation is used. Nonetheless,
the computation is much more complex [10]. Despite the diversity
of related subject, exiting literatures on the elastomeric seals
mainly focus on the static seals and reciprocating motion for the
O-rings or rectangular rings. Elastomeric sealing studies for those
with special cross section are rarely seen for their irregular
appearance and proprietary nature, such as the cambered elasto-
meric seal. The significant contributions in this aspect can be
found in the literatures of Yang [21] and Johannesson [22].

Due to the coupling between the contact pressure and film
thickness in the Reynolds equation, one method of solving the
Reynolds equation was based on the known (or assumed) sealing
contact pressure to calculate the film thickness. Müller [23]
calculated the film thickness and leakage with the experimental
measured contact pressure. White and Denny [24] assumed that
the contact pressure distribution was parabolic to solve the film
thickness. Generally, accuracy became the critical issue for this
method. With the development of numerical theory, iterative
methods were used, such as the Runge–Kutta method [25] and
the Petrov–Galerkin method [26]. The core idea of iterative
methods was to establish the contact pressure by the finite
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element theory and further to solve the film thickness iteratively
until the solution was converged. And it was adopted by Field and
Nau [4] to calculate the contact pressure, film thickness and the
leakage of rectangular seals. The significant advantage of the
iteration methods was the high precision of final solution. How-
ever, serious problems including numerical stability and incon-
sistency existed due to the high nonlinearity of the Reynolds
equation. In order to tackle the numerical stability problem caused
by coupling of the contact pressure and film thickness, a numerical
algorithm based on the principle of Newton iteration was devel-
oped by Ruskell [15]. Specifically, an integrodifferential equation
was obtained through the combination of the elasticity equation
and the Reynolds equation, which could be further solved itera-
tively. Nevertheless, because the contact pressure at sealing con-
tact was solved through the cumbersome finite element analysis,
efficiency was still a remained problem in solving process [10].
With improvement of the inverse hydrodynamic (IH) theory, the
IH method and modified versions were gradually developed to
solve the Reynolds equation [6,27–30]. However, the numerical
instability of imaginary roots could quickly destroy the conver-
gence of the final correct solution for application of the IH method.
This problem was tackled effectively by Nikas [6], who proposed a
modified IH method that avoided solving the cubic algebraic
equation of the film thickness and could be solved by a robust
numerical algorithm. The application of this method greatly
improved the numerical stability and solving speed.

A cambered elastomeric seal used in a novel universal joint for
reciprocating circular motion is investigated systematically in this
paper. Based on the linear elastic Hooke equations and Reynolds
equation, the mathematical models of the contact pressure, film
thickness and leakage with the variable substitution are

established. The numerical analysis and simulation are performed
on the basis of the modified IH method and the MATLAB numerical
tool. The effects of various parameters on the sealing performance
are investigated systematically. The rest of this paper is organized
as follows. The structure of the universal joint and the sealing
principle of cambered elastomeric seal are briefly introduced, and
then the mathematical models of contact pressure, film thickness
and leakage are presented in Section 2. Section 3 describes the
proposed numerical algorithm, simulation procedure, simulation
results and related discussion. Finally, some important conclusions
and the future work are drawn in Section 4.

2. Mathematical model

2.1. Structure of cambered elastomeric seal

In the drilling process, control for directional well trajectories is
achieved via the spindle offset for the point-the-bit drilling tools.
Therefore, the spindle is subject to the alternating load in practical
application, which even leads to fatigue failure. According to a
kind of hollow universal joint that can not only transfer torque
but also adjust the drilling direction [31], as shown in Fig. 1,
the problem mentioned above can be solved effectively. However,
the sealing problem is one of the most critical issues. It is the
cambered elastomeric seal that plays an effective role in the seal
for reciprocating circular motion of the universal joint pin. The
partial enlarged drawing of seal assembly is shown in the lower
right corner of Fig. 1.

The section view of seal assembly is shown in Fig. 2. The
cambered elastomeric seal is fixed with the external member and

Nomenclature

a, b, lz, R2 dimensions of elastomeric seal before installation
(Fig. 2), mm

a0, b0 dimensions of elastomeric seal after installation
(Fig. 2) (mm)

A, B pressure–density coefficients (Pa�1)
d wire diameter of spring (mm)
D outer diameter of coil (mm)
E elastic modulus of the elastomeric seal (MPa)
h, hm film thickness, hm¼h(θ¼θm) (Eq. (20)) (μm)
hmin minimum film thickness (μm)
h0 overall film thickness (μm)
H shear modulus of spring (GPa)
m mass leakage rate of per width of elastomeric seal (Eq.

(21)) (mg/(h∙1))
n cycle index
Nc active coils of spring
p contact pressure (Eq. (2)) (MPa)
q1, q2, q, q10, q20, q0, Q fluid leakages: q1, q2 (Eq. (22)), q10,q20

(Eq. (23)), Q (Eq. (24)), q¼q1�q2; q0 ¼q20–q10;
Q¼qþq0 (mg/h)

r0, d0, R1 dimensions of universal joint pin (Fig. 2) (mm)
R-square coefficient of determination
s, t, T intermediate variables, (Eq. (13))
SSE sum of squares due to error
Tm, Tn Tm¼T(θm) (Eq. (15)), Tn¼T(θn) (Eq. (18))
w contact angular velocity of the universal joint pin

relative to elastomeric seal (rad/s)
Z experimental constant (Eq. (7)), dimensionless

α, β anticlockwise (or clockwise) rotation angle of the
universal joint pin relative to the elastomeric seal
(Fig. 3) (1)

γ, φ central angles (Fig. A1) (1)
δx, δy, δz interferences of elastomeric seal in Cartesian coordi-

nate system (Eq. (3)) (mm)
δz0 longitudinal interference of elastomeric seal caused by

spring deformation (mm)
δθ z-interference of the elastomeric seal in polar coordi-

nate system (Eq. (5)) (mm)
Δz spring deformation (Eq. (4)) (mm)
εx, εy, εz strains of the elastomeric seal in Cartesian coordinate

system (Eq. (3))
ζ pressure–viscosity coefficients (Pa�1)
η, η0 fluid dynamic viscosity (Eq. (6)), η0¼η(p¼0) (Pa s)
θm polar angle coordinate of the extreme point for T in

polar coordinate system (dT(θm)/dθ¼0) (1)
θn polar angle coordinate of the inflection point for T in

polar coordinate system, d2T(θn)/dθ2¼0, computed by
Eq. (19) (1)

λ, G Lamé constants (MPa)
Λ lambda ratio: Λ¼h0/σ
μ Poisson’s ratio of the elastomeric seal
ξ film thickness ratio: ξ¼hmin/σ
ρ, ρ0 fluid mass density (Eq. (8)), ρ0¼ρ(p¼0) (kg/m3)
σ1, σ2, σ root mean square roughnesses, σ¼(σ12þσ22)1/2 (μm)

subscripts

i coordinate sequence
j basic cycle
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