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a b s t r a c t

Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encod-
ing or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to
drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo
changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are
interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as
response bias) that may contribute to these changes. Accumulating evidence from our own research
and others shows that perceptual learning is a conglomeration of effects, with training-induced changes
ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working
memory capacity) level of processing, and includes contributions from non-sensory factors that affect
decision making even on a ‘‘simple’’ auditory task such as frequency discrimination. We discuss our
emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual
tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some
implications for training populations other than young, smart, attentive and highly-motivated college
students.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The brain is a noisy machine. Single-neuron, as well as neural-
network dynamics are subject to both deterministic and random
noise originating from processes that span the range from the
molecular to the systemic (review in Faisal, Selen, & Wolpert,
2008). The concept of internal noise is fundamental to our under-
standing of how the brain encodes sensory stimuli, processes them
and makes behaviorally relevant decisions about them. Signal
detection theory (Green & Swets, 1966; Macmillan & Creelman,
2005) describes perceptual decision making in terms of the rela-
tionship between noisy decision variables (derived from noisy
internal representations of the stimulus) and a subjective decision
criterion. Internal noise therefore limits the accuracy of perceptual
decisions and consequently of any behavioral task performance.

Dosher and Lu (2005) first suggested that perceptual learning is
‘‘learning the limiting process’’: inducing changes in those pro-
cesses that act as bottlenecks to performance. These changes can
manifest as an increase in the signal-to-noise ratio (SNR) due to
signal enhancement (Gold, Bennett, & Sekuler, 1999; Gold, Sekuler,
& Bennett, 2004; Hurlbert, 2000; Wright, 1996) and/or internal
noise reduction (Dosher & Lu, 1998, 2005; Jones et al., 2013; Lu
& Dosher, 2008), but they can also reflect changes in non-random
inefficiencies such as response bias.

In this paper we expand the idea of perceptual learning as
reducing the internal noise and inefficiencies responsible for pro-
cessing bottlenecks. Models based on signal detection theory do
not conceive of internal noise as being of specifically sensory origin
or limited to the ascending neuronal pathways or networks associ-
ated with early sensory encoding. Physiological maskers such as
breathing, heartbeats and blood flow (Shaw & Piercy, 1962; Soder-
quist & Lindsey, 1971), as well as fluctuations in attention, motiva-
tion, memory, or other factors related to the decision process may
all limit decision accuracy. Even fluctuations of unknown origin in
resting state activity may modulate variations at various stages of
perceptual processing (Fox et al., 2007, 2006).

The source of the performance-limiting noise depends on what
is being trained and what differs between tasks. Learning can thus
be a high- or a low-level phenomenon, depending on the level at
which the noise originates. What is learned in a given task may de-
pend on the specific training conditions, as performance bottle-
necks may be defined by task- as well as stimulus-related
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variables, among others. Moreover, we suggest that learning trans-
fers to untrained tasks if and when both training and transfer task
are subject to the same performance-limiting noise sources (see
also McGovern, Webb, & Peirce, 2012). Conversely, different limit-
ing processes affecting the trained and transfer tasks will result in
specificity (i.e. non-transfer).

This paper presents evidence from our own work in the audi-
tory domain as well as from previous work in the visual domain
in support of this hypothesis. Using simple acoustic stimuli and
varying task and stimulus parameters, we show that perceptual
learning involves changes in internal noise sources and inefficien-
cies at multiple processing levels along the decision-making
pathway.

2. Perceptual learning: bottom-to-top

We use a perceptual decision model (Fig. 1) adapted from Pelli
(1991) and Dosher and Lu (1998, 1999) to illustrate the levels at
which internal noise may limit processing. For simplicity, we sep-
arate internal noise into processes that directly impact on sensory
processing and affect the internal representations of input stimuli
(hence ‘sensory’ internal noise, Fig. 1A), later processes that affect
the formation of the decision variable (Fig. 1B) and most likely
originate in higher-level, cognitive processes (e.g., comparison
mechanisms relying on working memory), and other sources of
inefficiency affecting the decision-making process such as

response bias or inattention (Fig. 1C). We are only concerned with
noise intrinsic to the observer (or listener); learning in the pres-
ence of external noise has been discussed extensively elsewhere
(e.g., Dosher & Lu, 2005; Vaina, Sundareswaran, & Harris, 1995),
and is outside the scope of this paper.

Computational models have been used to gain insight into the
underlying mechanisms of learning and transfer. Although internal
noise is integral to these models (Sperling, 1989), they are rarely
concerned with the source of that noise, only its effect on decision
making (c.f. Lu & Dosher, 2009). In this paper we focus on how
noise of various origins can place limitations on sensory and cogni-
tive processes and how it is affected by training, rather than its
computational implementation. In separating noise sources into
‘sensory’ and ‘cognitive’, we follow in the footsteps of other authors
(e.g., Durlach & Braida, 1969; Oxenham & Buus, 2000; Shinn-Cunn-
ingham, 2000), though we use these labels to refer to the processes
affected rather than the specific sources or origins of noise. Thus,
early ‘sensory’ noise can result from modulation by higher-level,
cognitive processes. We provide evidence here that training can af-
fect internal noise and sources of inefficiency throughout the pro-
cessing hierarchy.

2.1. Noise affecting sensory representations or their readout

We define sensory noise as variability associated with the early
sensory processing leading to the formation of the internal repre-
sentation of the stimulus (Fig. 1A). Sensory internal noise can be
intrinsic to the physiological processes along the ascending pro-
cessing pathways. In the auditory domain its sources include
(but are not exclusive to) non-deterministic transduction (e.g.,
due to Brownian motion of cochlear hair cells; Denk, Webb, & Hud-
speth, 1989), and stochastic neural encoding and transmission
both in the auditory periphery (Javel & Viemeister, 2000) and more
centrally (e.g., Vogels, Spileers, & Orban, 1989). Moreover, top-
down processes modulate auditory sensory processes as far down
the neural hierarchy as the sensory epithelium and even affect
middle-ear muscle activity (e.g., Maslin et al., 2013; Munro, Walker,
& Purdy, 2007), and these too may contribute noise to sensory
processes (see Amitay, 2009 for a discussion of the interaction be-
tween top-down and bottom-up processing in auditory learning).

How the channels described in the model (Fig. 1A) are con-
ceived depends on the task and the level of analysis. For example,
in a yes/no detection task each channel may be a frequency-tuned
filter, in which case the internal representation corresponds to
activity summed across spectral regions. The internal noise associ-
ated with individual channels is of sensory origin. Alternatively,
each channel may represent temporal bins, such as observation
intervals in a multi-interval forced-choice task. However the chan-
nels are defined, each weight, x, indicates the relative degree to
which the corresponding channel informs the decision process.
As such, |x| may be a metric of the amount of relevant information
in the individual channels (bottom up) present in each presenta-
tion interval (or spectral region) or how much attention the lis-
tener pays to that interval or aspect of the physical input.
Attentional fluctuations (Faisal, Selen, & Wolpert, 2008) or varia-
tions in resting state activity (e.g., Fox et al., 2007), may differen-
tially affect sensory processing in individual information channels.

Internal noise affects sensory processing at very early stages.
We have recently demonstrated (Amitay et al., 2013) that varia-
tions in the internal representation of identical input stimuli
(1-kHz tones) can drive the decision process in an odd-one-out task
(Fig. 2A). We showed that electrophysiological activity variations,
observed as early as 100 ms after stimulus onset and associated
with sensory encoding (N1–P2 complex), can predict the percep-
tual decision (Fig. 2B). These variations may have reflected noise
of sensory origin or random fluctuations in attention during the
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Fig. 1. A schematic perceptual decision model. The input to the system is a
combination of the signal and external noise. This input is transformed into an
internal representation by summing over the weighted outputs of n independent
information channels, which are subject to internal noise (multiplicative, additive,
or both; (A). Note that the label ‘sensory’ here does not refer to the source of the
noise but rather to the type of processing affected by it. In forming the decision
variable the internal representation may be further affected by late internal noise
(B), which is generally of cognitive origin. To make a decision the observer
compares the decision variable to a criterion, k, which may or may not be ideally
placed, e.g. due to bias (C). Other sources of internal noise, such as physiological
noise (e.g. heartbeat, breathing) or inattention are not explicitly included in this
model.
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