FISEVIER

Contents lists available at ScienceDirect

Behavioural Brain Research

journal homepage: www.elsevier.com/locate/bbr

Review

The role of serotonin in drug use and addiction

Christian P. Müller^{a,*}, Judith R. Homberg^b

- ^a Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
- b Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Geert Grooteplein 21, Nijmegen 6525 EZ, Netherlands

HIGHLIGHTS

- We review the role of the serotonergic system in the establishment of psychoactive drug use and transition to addiction.
- There is a distinct involvement of the serotonergic system in both processes.
- A new functional model suggests specific serotonergic adaptations during controlled drug use.
- Induced serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use.
- Serotonergic adaptations often overlap with genetic risk factors for addiction.

ARTICLE INFO

Article history: Received 13 March 2014 Received in revised form 4 April 2014 Accepted 5 April 2014 Available online 25 April 2014

Keywords: Serotonin Psychoactive drug Abuse Addiction Animal model Genetic risk

ABSTRACT

The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.

© 2014 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	148
2.	Measuring controlled drug use vs. addiction in animal models	149
3.	The effects of addictive drugs on 5-HT activity	151

Abbreviations: AMPH, amphetamine; CPA, conditioned place aversion; CPP, conditioned place preference; CS, conditioned stimulus; CSF, cerebrospinal fluid; DA, dopamine; DCC, dopa decarboxylase; THC, tetrahydrocannabinol; DRN, dorsal raphe nucleus; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin; 5-HTP, 5-hydroxy-L-tryptophane; 5-HTT, serotonin transporter coding gene; 5-HTTLPR, insertion/deletion polymorphism in the serotonin transporter gene promoter region; FC, frontal cortex; GTP, guanosine triphosphate; ICSS, intracranial self-stimulation; IPSP, inhibitory postsynaptic potential; LgA, long access rats; MAPK, mitogen-activated protein kinase; MDMA, 3,4-methylenedioxymethamphetamine; METH, methamphetamine; MAO-A, monoamine oxidase A; MRN, median raphe nucleus; NA, noradrenaline; Nac, nucleus accumbens; PET, positron emission tomography; PFC, prefrontal cortex; SSRI, selective serotonin reuptake inhibitor; SERT, serotonin transporter; ShA, short access rats; SN, substantia nigra; SNP, single nucleotide polymorphism; 3'-UTR, 3'-untranslated region; TPH, tryptophan hydroxylase; VNTR, variable number tandem repeat; VTA, ventral tegmental area.

E-mail address: Christian.Mueller@uk-erlangen.de (C.P. Müller).

^{*} Corresponding author at: Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany. Tel.: +49 0 9131 85 36896; fax: +49 0 9131 85 36002.

	3.1.		Cocaine			
	3.2.	-	Amphetamine			
	3.3.	Methamphetamine				
	3.4.	MDMA				
	3.5.	·				
	3.6.		S	153		
	3.7.			153		
4.	3.8.		etonin in non-addicted drug use	153 153		
4.	4.1.		g 5-HT activity	153		
	4.1.	4.1.1.	Cocaine	154		
		4.1.2.	Amphetamine	154		
		4.1.3.	Methamphetamine	154		
		4.1.4.	MDMA	154		
		4.1.5.	Morphine and heroin	155		
		4.1.6.	Alcohol	155		
		4.1.7.	Nicotine	155		
	4.2.	Potentia	ting 5-HT activity	155		
		4.2.1.	Cocaine	155		
		4.2.2.	Amphetamine	156		
		4.2.3.	Methamphetamine	156		
		4.2.4.	MDMA	157		
		4.2.5.	Morphine and heroin	157		
		4.2.6.	Alcohol	157		
	4.3	4.2.7.	Nicotine	158		
	4.3.		of the 5-HT _{1A} -receptor	158		
		4.3.1. 4.3.2.	Cocaine	158 160		
		4.3.2. 4.3.3.	Methamphetamine	161		
		4.3.4.	MDMA	161		
		4.3.5.	Morphine and heroin	161		
		4.3.6.	Cannabis	161		
		4.3.7.	Alcohol	162		
		4.3.8.	Nicotine	162		
	4.4.	The role	of the 5-HT _{1B} -receptor.	162		
		4.4.1.	Cocaine	162		
		4.4.2.	Amphetamine	163		
		4.4.3.	Methamphetamine	163		
		4.4.4.	MDMA	163		
		4.4.5.	Morphine and heroin	163		
	4.5.	4.4.6.	Alcohol	164 164		
	4.5.	4.5.1.	Cocaine	164		
		4.5.2.	Amphetamine	164		
		4.5.3.	Methamphetamine	164		
		4.5.4.	MDMA.			
		4.5.5.	Morphine and heroin	165		
		4.5.6.	Cannabis	165		
		4.5.7.	Alcohol	165		
		4.5.8.	Nicotine	166		
	4.6.		of the 5-HT _{2B} -receptor	166		
		4.6.1.	Cocaine	166		
		4.6.2. 4.6.3.	Amphetamine	166 166		
	4.7.		of the 5-HT _{2C} -receptor	166		
	4.7.	4.7.1.	Cocaine	166		
		4.7.2.	Amphetamine	167		
		4.7.3.	Methamphetamine	167		
		4.7.4.	MDMA	167		
		4.7.5.	Morphine and heroin	167		
		4.7.6.	Cannabis	167		
		4.7.7.	Alcohol	167		
		4.7.8.	Nicotine	168		
	4.8.		of the 5-HT ₃ -receptor	168		
		4.8.1.	Cocaine	168		
		4.8.2. 4.8.3.	Amphetamine	169 169		
		4.8.4.	MDMA	169		
		4.8.5.	Morphine and heroin	169		
		4.8.6.	Cannabis	169		
		4.8.7.	Alcohol	169		
		4.8.8.	Nicotine	170		

Download English Version:

https://daneshyari.com/en/article/6257399

Download Persian Version:

https://daneshyari.com/article/6257399

<u>Daneshyari.com</u>